历届试题 国王的烦恼
时间限制:1.0s 内存限制:256.0MB
问题描述
C国由n个小岛组成,为了方便小岛之间联络,C国在小岛间建立了m座大桥,每座大桥连接两座小岛。两个小岛间可能存在多座桥连接。然而,由于海水冲刷,有一些大桥面临着不能使用的危险。
如果两个小岛间的所有大桥都不能使用,则这两座小岛就不能直接到达了。然而,只要这两座小岛的居民能通过其他的桥或者其他的小岛互相到达,他们就会安然无事。但是,如果前一天两个小岛之间还有方法可以到达,后一天却不能到达了,居民们就会一起抗议。
现在C国的国王已经知道了每座桥能使用的天数,超过这个天数就不能使用了。现在他想知道居民们会有多少天进行抗议。
如果两个小岛间的所有大桥都不能使用,则这两座小岛就不能直接到达了。然而,只要这两座小岛的居民能通过其他的桥或者其他的小岛互相到达,他们就会安然无事。但是,如果前一天两个小岛之间还有方法可以到达,后一天却不能到达了,居民们就会一起抗议。
现在C国的国王已经知道了每座桥能使用的天数,超过这个天数就不能使用了。现在他想知道居民们会有多少天进行抗议。
输入格式
输入的第一行包含两个整数n, m,分别表示小岛的个数和桥的数量。
接下来m行,每行三个整数a, b, t,分别表示该座桥连接a号和b号两个小岛,能使用t天。小岛的编号从1开始递增。
接下来m行,每行三个整数a, b, t,分别表示该座桥连接a号和b号两个小岛,能使用t天。小岛的编号从1开始递增。
输出格式
输出一个整数,表示居民们会抗议的天数。
样例输入
4 4
1 2 2
1 3 2
2 3 1
3 4 3
1 2 2
1 3 2
2 3 1
3 4 3
样例输出
2
样例说明
第一天后2和3之间的桥不能使用,不影响。
第二天后1和2之间,以及1和3之间的桥不能使用,居民们会抗议。
第三天后3和4之间的桥不能使用,居民们会抗议。
第二天后1和2之间,以及1和3之间的桥不能使用,居民们会抗议。
第三天后3和4之间的桥不能使用,居民们会抗议。
数据规模和约定
对于30%的数据,1<=n<=20,1<=m<=100;
对于50%的数据,1<=n<=500,1<=m<=10000;
对于100%的数据,1<=n<=10000,1<=m<=100000,1<=a, b<=n, 1<=t<=100000。
对于50%的数据,1<=n<=500,1<=m<=10000;
对于100%的数据,1<=n<=10000,1<=m<=100000,1<=a, b<=n, 1<=t<=100000。
思路:从后向前贪心,按时间先后顺序排序,排在后面的一定在前面可以通过,用并查集来判断两个小岛间能否连通
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#define max_ 10010
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
struct node
{
int x,y,t;
};
struct node num[100100];
int n,m;
int pre[max_];
bool cmp(const node &a,const node &b)
{
return a.t>b.t;
}
int find(int x)
{
return pre[x]==x?x:pre[x]=find(pre[x]);
}
void join(int x,int y)
{
x=find(x);
y=find(y);
if(x!=y)
pre[y]=x;
}
int main(int argc, char const *argv[]) {
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d%d",&num[i].x,&num[i].y,&num[i].t);
for(int i=1;i<=n;i++)
pre[i]=i;
sort(num+1,num+1+m,cmp);
int ans=0,ti=-1;
for(int i=1;i<=m;i++)
{
if(find(num[i].x)!=find(num[i].y))
{
join(num[i].x,num[i].y);
if(ti!=num[i].t)
{
ans++;
ti=num[i].t;
}
}
}
printf("%d\n",ans );
return 0;
}