[笔记] Convex Optimization 2015.10.28

本文详细阐述了凸函数的性质及其在优化理论中的重要性,通过泰勒展开揭示了凸函数的局部特性,并讨论了其在解决实际优化问题中的应用。此外,文章还介绍了链式法则、泰勒公式在多变量函数求导中的应用,以及在计算复杂度和优化算法设计方面的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • Proposition: Let f:RR with domf convex and f twice differentiable.
    Then f is convex if f′′(x)0 for all xdomf.
  • Proof: Let z,xdomf, then
    f(z)===f(x)+zxf(t)dtf(x)+zx(f(x)+txf′′(s)ds)dtf(x)+f(x)(zx)+zxtxf′′(s)dsdtf(x)+f(x)(zx)(two case to consider)

    QED by “First order conditions”

Chain Rule: Let f:RnRm be differentiable at xdomf,
let g:RmRk be differentiable at f(x)domg,
then if h:RnRk is defined by h(y)=g(f(y))yRn, h is differentiable at x and Dh(x)=Dgf(x))Df(x)
(Df:m×n matrix, Dg:k×m matrix)
can be written as h=gf,D(gf)=(Dgf)Df

  • Example: Let f:RmR, ARm×n, bRn, l(x)=Ax+b.
    D(fl)(x)=[(Dfl)Dl](x)=Df(Ax+b)A=f(Ax+b)TA

  • Example: Let f:RnR, g:RR, then
    D(gf)(x)=Dg(f(x))Df(x)=g(f(x))f(x)T

  • Example: Let f:RnR, g:RR be defined by g(t)=f(x+tu) for some vectors x,u.
    To compute g(t), let h(t)=x+tu, so h:RRn and g=fh.
    So g(t)=((Dfh)Dh)(t)=fT(h(t))Dh(t)=f(x+tu)Tu=uTf(x+tu).
    To compute g′′(t),
    g′′(t)=(D[(uTf)h])(t)=([(DuTf)h]Dh)(t)=(((uTDf)h)u)(t)=uT2f(h(t))u

  • Corollary: Let f:RnR be twice differentiable, domf convex.
    The f is convex if 2f0.

  • Example: “log-sum-exp” f(x)=log(ex1++exn),f:RnR,domf=Rn
    f(x)=fx1(x)fxn(x)=1ex1++exnex1exn
    xi1ex1++exn=(1ex1++exn)2exi
    (2f)ij,ij=xiexjex1++exn=(1ex1++exn)2exiexj
    (2f)ii=xiexiex1++exn=(1ex1++exn)2(exi)2+exiex1++exn
    Put zi=exi, then ex1++exn=ITz
    2f=(1ITz)2zzT+1ITzdiag(z)=1ITz(diag(z)1ITzzzT)

    xT(ITzdiag(z)zzT)x0ITzi=1nx2izi(zTx)20(zTx)2ITzi=1nx2izi=(z1,,zn)2i=1nx1z1,,xnzn2
  • Exercise: Prove that f(x,y)=y2/x is convex, domf=R++×R
    f=y2x22yx,2f=2y2x32yx22yx22x=1x3[2y22xy2xy2x2]=2x3[yx][yx]

  • Proposition: Let f:RnR be twice differentiable at x. Then
    f(x+z)=f(x)+f(x)Tz+12zT2f(x)z+errx(z)
    where limz0errx(z)2z22=0.
    Equivalent to: ε>0,r>0,s.t.(z2rerrx(z)2εz22)

  • Proof: Let ε>0, then r>0 s.t.
    f(x+z)=f(x)+2f(x)z+errx(z)
    where errx(z)2εz2 for all z s.t. z2r
    f(x+z)f(x)2f(x)z2εz2 for all z s.t. z2r
    Let z s.t. z2r and let u=z/z2, g(t)=f(x+tu),tR.
    Then g(t)=f(x+tu)u
    So
    f(x+tu)========f(x)+t0g(s)dsf(x)+t0uTf(x+su)dsf(x)+uTt0(f(x)+2f(x)su+errx(su))dsf(x)+uTf(x)(t0)+uT2f(x)ut0sds+uTt0errx(su)dsf(x)+f(x)Ttu+12(tu)T2f(x)(tu)+u2t0errx(su)2dsf(x)+f(x)Ttu+12(tu)T2f(x)(tu)+u2t0εsu2dsf(x)+f(x)Ttu+12(tu)T2f(x)(tu)+u2εt0tdsf(x)+f(x)Ttu+12(tu)T2f(x)(tu)+u2εt2f(x)+f(x)Ttu+12(tu)T2f(x)(tu)+εt2f(x)+f(x)Tz+12zT2f(x)z+εz22
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值