[笔记] Convex Optimization 2015.09.16

本文深入探讨了凸优化及其核心概念凸函数的定义、性质与证明,包括线性函数、二次函数、复合函数的凸性验证,以及凸集的概念与性质,通过实例展示了凸函数在实际应用中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

minf0(x)
s.t.fi(x)bi,i=1...m
Here xRn,fi:RnR,i=0...m are convex function.
I.e. fi(θx+(1θ)y)θf(x)+(1θ)f(y) for all θ[0,1] and all x,ydomfi
where domfiRn is a convex set
where CRn is convex if and only if θx+(1θ)yC for all x,yC, for all θ[0,1]

  • Fact: Set of xs s.t.fi(x)b is a convex set.
  • Proof: Take x,y,s.t.fi(x)bi,fi(y)bi and θ[0,1],
    Then fi(θx+(1θ)y)θfi(x)+(1θ)fi(y)θbi+(1θ)bi=bi

  • Fact: The function f:RR,f(x)=x2 is convex.

  • Proof: (θx+(1θ)y)2=θ2+x2+2θ(1θ)xy+(1θ)2y2
    =[θ+θ2θ]x2+2θ(1θ)xy+[(1θ)+(1θ)2(1θ)]y2
    =θx2+(1θ)y2+θ(θ1)x2+2θ(1θ)xy+(1θ)(θ)y2
    =θf(x)+(1θ)f(y)+θ(θ1)(xy)2
    θf(x)+(1θ)f(y)

  • All linear function is convex function.

  • Fact: Let ARm×n,bRm,f:Rm be convex,
    Then g:Rn defined by g(x)=f(Ax+b) is convex.

  • Proof: Let x,ydomg,θ[0,1]
    Then A(θx+(1θ)y)+b=θ(Ax+b)+(1θ)(Ay+b)domf
    Take x,ydomg,θ[0,1]
    Then g(θx+(1θ)y)=f(θ(Ax+b)+(1θ)(Ay+b))θf(Ax+b)+(1θ)f(Ay+b)=θg(x)+(1θ)g(y)

  • Fact: The sum of two convex functions is convex.

  • Note: Proof starts by nothing that if f, g are convex functions, then dom(f+g)=domfdomg is convex, because intersection of convex sets is convex.
  • Example: The function f:RnR defined by f(x)=Axb22 is convex.
  • Proof: Axb22=(aT1xb1)2+...+(aTmxbm)2 is a sum of convex functions.
  • Example: minAxb22 is a convex optimization problem. This kind of problem is known as a least-square problem.

  • Definition: Norms: A function f:RnR is a norm if and only if
    f(x)0 for all xRn non-negetivity
    f(x)=0x=0 definiteness
    f(tx)=tx for all tR,xRn homogeneity
    f(x+y)f(x)+f(y),x,yRn triangle inequality

  • Example: For p1, xp=(x1p+...+xnp)1p is a norm
    x=maxi=1...nxi

Geometric Picture: The set B1=xRn:x1 is bounded, convex, centrally symmetric at 0, nonempty interior.
(If CRn the interior C0 of C is the set {xC:{y:xy2<r}C, for some r>0})

  • Definition: We say that sequence (Zi)i=1 converges to z under the norm if and only if for every ε>0 there exists NN,s.t.ziz<ε for all iN
  • Fact: In Rn, convergence happens in one norm if and only if it happens in any other norm.
    Let be a norm in Rn,
    Then c1,c2>0, such that c1x1<x<c2x1 for all xRn

  • Lemma 1: xyxy for any norm Triangle inequality

  • Proof: x=y+(xy)y+xy
  • Lemma 2: The norm is continous with respect to 1.
    I.e., for any xRn, for any ε>0, there exists δ>0
    s.t.xy1<δxy<ε
  • Proof: xyxy
    and xy=ni=1ei(xiyi)
    ni=1ei(xiyi)=ni=1xiyiei
    maxi(ei)ni=1xiyi=maxi(ei)xy1
    where e1,...,en is the standard basis
    so if δ=εmaxi(ei)
    then xy1<δxy<ϵ
    attains its minimum and maximum on the set {x:x1=1} which is closed and bounded.
    Let xmin be such that xminx for all x{x:x11},
    let xmax be such that xmaxx for all x{x:x11}
    Let c1=xmin0,c2=xmax then for arbitrary x,x0,
    x=xx1x1=x1xx1x1xmax=c2x1
    Similarity, xc1x1

  • Definition: A matrix ARn×n is positive semidefinite, if xTAx0,xR, and A is symmetric.

  • Fact: Let A symmetric, A=PTDP where P is orthogonal, D diagonal,
    Then A is positive semidefinite iff D0.

  • Proof: Say D=diag(λ1,...,λn),λi<0
    Let x=PTei, Then xTAx=(PTei)TPTDPPTei=eiTDei=λi<0
    If D0, then xTAx=(xTPT)D(Px)0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值