[笔记] Convex Optimization 2015.11.25

本文探讨了范数与其共轭函数的关系,并给出了多种常见函数的共轭表达形式。此外,还介绍了凸集间的超平面分离定理及其证明过程。

y=sup{xTy:x1}xTyxy
(because xTxyy)
Want inequality of type: xTyf(x)+"f(y)" for “general” f (Fenchel’s Inequality)

  • Definition: For f:RnR, the conjugate f of f is defined by f(y)=supx(xTyf(x))
    with domf= set of y’s for which sup is <.
    • Example:

      1. f(x)=aTx+b(xRn)
        f(y)=supxxTyaTxb={bif yaif y=a
      2. f(x)=logx(x>0)
        (xy+logx)=y+1x=0x=1y
        f(y)=supx>0xTy+logx={log(y)1if y0if y<0
      3. f(x)=ex(xR)
        (xyex)=yex=0x=logy
        f(y)=supxxTyex={ylogyyif y<0if y0
      4. f(x)=xlogx(x0)
        (xyxlogx)=ylogx1=0x=ey1
        f(y)=supx0xTyxlogx=yey1(y1)ey1=ey1
      5. f(x)=12xTQx with QSn++
        f(y)=supxxTy12xTQx=yTQ1y12yTQ1y=12yTQ1y
        (infxxTAx+xTbbestx=12A1b)
        So x=Q1y
        xTy12xTQx+12yTQ1y, for all Q0
      6. f(x)=log(ni=1exi)
        f(y)=supxxTylog(ni=1exi)
        (xylog(ni=1exi))=yexini=1exi=0
        yi=exini=1exi,y0,1Ty=1
        assume for simplicity, y0
        put xi=log(yi), then exi=1Ty=1 and optimality conditions hold
        then f(y)=ni=1yilog(yi)log(1Ty)=ni=1yilog(yi)
      7. f(x)=x
        f(y)=supxxTyx={0if y1if y>1
        xTyxxyx=x(y1)0 if y10
      8. f(x)=12x2
        f(y)=supxxTy12x2=12y2
        xTy12x2xy12x212y2 (x=y)
        xTy12x2+12y2
    • Proof of general hyperplane seperation:
      Let CRn be a convex set, HR be the affine subspace of smallest dimention containing C, we write Cε={x:Bε(x)HC}
      then Cε"relint(C)"=ε>0Cε. (relint: relative interior)
      (Crelint(C)¯¯¯¯¯¯¯¯¯¯¯¯¯, C is a subset of closure of relint(C))
      Let C,D be disjoint convex sets. Then for every ε>0 the sets Aε=Cε¯¯¯¯B1ε(0), D¯¯¯ are closed disjoint convex sets with Cε¯¯¯¯B1ε(0) bounded, and dist(Aε,D¯¯¯)ε>0.
      So AεRn, aε0, bεR s.t. (aε,bε) define a seperating hyperplane for Aε,D¯¯¯.
      aTεxbεxAε, aTεxbεxD¯¯¯
      WLOG aε=1
      The sequence (a⃗ 1n)n=1 is a sequence of unit vectors and so has a convergent subsequence, say WLOG convergent to a0Rn.
      can assume sequence b1n is bonded (or else one of the sets C,D is empty)
      and so also convergent to some value b0R.
      Want to show (a0,b0) is SH for C,D, i.e., that
      aT0xb0xC,aT0xb0xD
      (Assume C is not a point, proof like above; then assume D is not a point, switch C,D.
      If C,D are points, obious true.)

    Log-convexity and log-concavity
    - Definition: f:RnR>0 is log-convex (log-concave) if log(f) is convex (concave).
    - Convexity:
    log(f(θx+(1θ)y))θlog(f(x))+(1θ)log(f(y))=log(f(x)θf(y)1θ)
    f(θx+(1θ)y)f(x)θf(y)1θ
    - Remark 2: log-convex convex, f(x)=elogf(x), (composition function, QED)
    concave log-concave

非常经典,我们教材就用的这个!该版本非常清晰,强烈推荐! Preface xi 1 Introduction 1 1.1 Mathematical optimization . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Least-squares and linear programming . . . . . . . . . . . . . . . . . . 4 1.3 Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Nonlinear optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 I Theory 19 2 Convex sets 21 2.1 Affine and convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Some important examples . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Operations that preserve convexity . . . . . . . . . . . . . . . . . . . . 35 2.4 Generalized inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5 Separating and supporting hyperplanes . . . . . . . . . . . . . . . . . . 46 2.6 Dual cones and generalized inequalities . . . . . . . . . . . . . . . . . . 51 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3 Convex functions 67 3.1 Basic properties and examples . . . . . . . . . . . . . . . . . . . . . . 67 3.2 Operations that preserve convexity . . . . . . . . . . . . . . . . . . . . 79 3.3 The conjugate function . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.4 Quasiconvex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.5 Log-concave and log-convex functions . . . . . . . . . . . . . . . . . . 104 3.6 Convexity with respect to generalized inequalities . . . . . . . . . . . . 108 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 viii Contents 4 Convex optimization problems 127 4.1 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Convex optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4.3 Linear optimization problems . . . . . . . . . . . . . . . . . . . . . . . 146 4.4 Quadratic optimization problems . . . . . . . . . . . . . . . . . . . . . 152 4.5 Geometric programming . . . . . . . . . . . . . . . . . . . . . . . . . . 160 4.6 Generalized inequality constraints . . . . . . . . . . . . . . . . . . . . . 167 4.7 Vector optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5 Duality 215 5.1 The Lagrange dual function . . . . . . . . . . . . . . . . . . . . . . . . 215 5.2 The Lagrange dual problem . . . . . . . . . . . . . . . . . . . . . . . . 223 5.3 Geometric interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 232 5.4 Saddle-point interpretation . . . . . . . . . . . . . . . . . . . . . . . . 237 5.5 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 5.6 Perturbation and sensitivity analysis . . . . . . . . . . . . . . . . . . . 249 5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 5.8 Theorems of alternatives . . . . . . . . . . . . . . . . . . . . . . . . . 258 5.9 Generalized inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 II Applications 289 6 Approximation and fitting 291 6.1 Norm approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 6.2 Least-norm problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 6.3 Regularized approximation . . . . . . . . . . . . . . . . . . . . . . . . 305 6.4 Robust approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 6.5 Function fitting and interpolation . . . . . . . . . . . . . . . . . . . . . 324 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 7 Statistical estimation 351 7.1 Parametric distribution estimation . . . . . . . . . . . . . . . . . . . . 351 7.2 Nonparametric distribution estimation . . . . . . . . . . . . . . . . . . 359 7.3 Optimal detector design and hypothesis testing . . . . . . . . . . . . . 364 7.4 Chebyshev and Chernoff bounds . . . . . . . . . . . . . . . . . . . . . 374 7.5 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 Contents ix 8 Geometric problems 397 8.1 Projection on a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 8.2 Distance between sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 8.3 Euclidean distance and angle problems . . . . . . . . . . . . . . . . . . 405 8.4 Extremal volume ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . 410 8.5 Centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 8.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 8.7 Placement and location . . . . . . . . . . . . . . . . . . . . . . . . . . 432 8.8 Floor planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 III Algorithms 455 9 Unconstrained minimization 457 9.1 Unconstrained minimization problems . . . . . . . . . . . . . . . . . . 457 9.2 Descent methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 9.3 Gradient descent method . . . . . . . . . . . . . . . . . . . . . . . . . 466 9.4 Steepest descent method . . . . . . . . . . . . . . . . . . . . . . . . . 475 9.5 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 9.6 Self-concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 9.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 10 Equality constrained minimization 521 10.1 Equality constrained minimization problems . . . . . . . . . . . . . . . 521 10.2 Newton’s method with equality constraints . . . . . . . . . . . . . . . . 525 10.3 Infeasible start Newton method . . . . . . . . . . . . . . . . . . . . . . 531 10.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 11 Interior-point methods 561 11.1 Inequality constrained minimization problems . . . . . . . . . . . . . . 561 11.2 Logarithmic barrier function and central path . . . . . . . . . . . . . . 562 11.3 The barrier method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568 11.4 Feasibility and phase I methods . . . . . . . . . . . . . . . . . . . . . . 579 11.5 Complexity analysis via self-concordance . . . . . . . . . . . . . . . . . 585 11.6 Problems with generalized inequalities . . . . . . . . . . . . . . . . . . 596 11.7 Primal-dual interior-point methods . . . . . . . . . . . . . . . . . . . . 609 11.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 x Contents Appendices 631 A Mathematical background 633 A.1 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 A.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 A.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 A.4 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 A.5 Linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 B Problems involving two quadratic functions 653 B.1 Single constraint quadratic optimization . . . . . . . . . . . . . . . . . 653 B.2 The S-procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 B.3 The field of values of two symmetric matrices . . . . . . . . . . . . . . 656 B.4 Proofs of the strong duality results . . . . . . . . . . . . . . . . . . . . 657 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 C Numerical linear algebra background 661 C.1 Matrix structure and algorithm complexity . . . . . . . . . . . . . . . . 661 C.2 Solving linear equations with factored matrices . . . . . . . . . . . . . . 664 C.3 LU, Cholesky, and LDLT factorization . . . . . . . . . . . . . . . . . . 668 C.4 Block elimination and Schur complements . . . . . . . . . . . . . . . . 672 C.5 Solving underdetermined linear equations . . . . . . . . . . . . . . . . . 681 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 References 685 Notation 697 Index 701
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值