PyTorch生成式人工智能(12)——StyleGAN详解与实现

0. 前言

StyleGAN (Style-Generative Adversarial Networks) 是生成对抗网络 (Generative Adversarial Networks, GAN) 的变体,是一种无监督学习模型,用于生成逼真且高分辨率的图像。与传统 GAN 不同,StyleGAN 引入了两个关键概念:样式迁移和逐渐增强。样式迁移允许生成网络控制图像的风格和外观,从而生成具有不同特征的图像。逐渐增强则是指生成网络逐层地生成图像,先生成粗略的细节,然后逐渐添加更多细节和结构,从而获得更加逼真的图像。本节中,将利用预训练的 StyleGAN2 模型执行风格迁移

1. StyleGAN

1.1 模型介绍

相比于传统生成对抗网络 (Generative Adversarial Networks, GAN),StyleGAN 的主要优点在于其能够生成高分辨率的逼真图像,同时可以控制所生成图像的风格。StyleGAN 使用自适应实例规范化 (Adaptive Instance Normalization

评论 51
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值