AIGC实战——MuseGAN详解与实现
0. 前言
在基于 Transfromer 生成音乐一节,我们可以看到可视化的乐谱类似于一幅图像,因此,我们可以利用图像生成方法替代序列生成技术生成音乐。可以将音乐生成视为一个图像生成问题,这意味着可以不使用 Transformer
,而是应用在图像生成问题中表现出色的基于卷积的技术,例如生成对抗网络 (Generative Adversarial Network, GAN)。本节中,我们将解决多声部音乐生成的问题,并探讨如何使用基于 GAN
架构创建多声部音乐。
1. MuseGAN
MuseGAN
通过一种新颖的生成对抗网络 (Generative Adversarial Network
, GAN
) 框架来训练模型生成复调、多轨和多小节的音乐。此外,通过将生成器的输人噪声向量划分职责,实现对音乐的时域以及声部等高级特征进行精细控制。为了训练 MuseGAN
,我们将使用 Bach C