PyTorch深度学习实战(16)——面部关键点检测
0. 前言
我们已经学习了如何解决二分类(猫狗分类)和多分类( fashionMNIST )问题。本节中,我们将学习如何解决回归问题,研究多个自变量对多个因变量的影响。假如我们需要预测面部图像上的关键点,例如眼睛、鼻子和下巴的位置,就需要采用新的策略构建模型来检测面部关键点。在本文中,我们将基于预训练 VGG16
架构提取图像特征,然后微调模型检测图像中人物面部关键点。
1. 关键点检测
1.1 关键点检测模型分析
面部关键点检测( Facial Landmark Detection
)旨在自动识别并捕捉面部照片或视频中的关键点位置,例如眼睛、鼻子、嘴巴、眉毛等。通常使用深度学习算法通过对丰富的面部数据进行训练,自动提取面部特征,识别面部关键点位置,并将其标记在面部图片或视频的相应位置上。面部关键点检测可以使计算机更好地理解和学习面部图像和视频中的信息,提取面部特征,为人脸识别、表情识别和面部特征分析等应用提供基础数据。