这题没有信息思想,其实就是数学推式子
——————————————————————————————————————
定义差分数组ai定义差分数组a_i定义差分数组ai
∑a1=1m∑a2=1m.......∑ak−1=1m(n−∑i=1k−1)=mk−1n−∑a1=1m......∑ak−1=1m∑i=1k−1a[i]\sum _{{a_1}=1}^m\sum _{a_2=1}^m .......\sum _{a_{k-1}=1}^m(n-\sum _{i=1}^{k-1})=m^{k-1}n-\sum_{a_{1}=1}^m......\sum_{a_{k-1}=1}^{m}\sum_{i=1}^{k-1}a[i]∑a1=1m∑a2=1m.......∑ak−1=1m(n−∑i=1k−1)=mk−1n−∑a1=1m......∑ak−1=1m∑i=1k−1a[i]
因为后一个式子∑a1=1m......∑ak−1=1m∑i=1k−1a[i]\sum_{a_{1}=1}^m......\sum_{a_{k-1}=1}^{m}\sum_{i=1}^{k-1}a[i]∑a1=1m......∑ak−1=1m∑i=1k−1a[i]的意义是所有可能的aia_iai值求和,总共有(k−1)∗mk−1个数贡献答案(k-1)*m^{k-1}个数贡献答案(k−1)∗mk−1个数贡献答案,因为枚举每个aia_iai的次数相同,所以这个式子可以装化为(k−1)∗mk−1∗∑i=1mi(k-1)*m^{k-1}* \sum_{i=1}^{m}i(k−1)∗mk−1∗∑i=1mi
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
ll mod,n,k,m;
ll ksm(ll x,ll pow){
if(pow==0) return 1;
ll ans=1%mod,res=x%mod;
while(pow){
if(pow&1) ans=ans*res%mod;
res=res*res%mod;
pow>>=1;
}
return ans%mod;
}
int main(){
scanf("%lld%lld%lld%lld",&n,&k,&m,&mod);
if(k==1){
printf("%lld",n%mod);
return 0;
}
n%=mod;// very important 不取余会爆精度
ll tmp=ksm(m,k-2);
ll ans=((m*n%mod-(k-1)%mod*((((m+1)*m)/2)%mod))%mod)%mod;
if(ans<0) ans+=mod;
printf("%lld",ans*tmp%mod);
}