裂项相消

已知数列 { a n } \{a_n\} {an} 的前 n n n 项和为 S n S_n Sn ,且满足 S n = a n + n 2 + 1 , ( n ∈ N ∗ ) S_n=a_n+n^2+1,(n\in N^*) Sn=an+n2+1,(nN).
(1) 求 { a n } \{a_n\} {an} 的通项公式;
(2) 求证: 1 S 1 + 1 S 2 + ⋯ + 1 S n &lt; 3 4 \dfrac{1}{S_1}+\dfrac{1}{S_2}+\cdots+\dfrac{1}{S_n}&lt;\dfrac{3}{4} S11+S21++Sn1<43.

[解析]
(1) 由 S n = a n + n 2 + 1. S_n=a_n+n^2+1. Sn=an+n2+1. S n + 1 = a n + 1 + ( n + 1 ) 2 + 1. S_{n+1}=a_{n+1}+(n+1)^2+1. Sn+1=an+1+(n+1)2+1.两式相减得 a n = 2 n + 1. a_n=2n+1. an=2n+1.
(2)由(1)得 S n = n ( n + 2 ) S_n=n(n+2) Sn=n(n+2),所以

&ThickSpace; 1 S 1 + 1 S 2 + ⋯ + 1 S n \quad\;\dfrac{1}{S_1}+\dfrac{1}{S_2}+\cdots+\dfrac{1}{S_n} S11+S21++Sn1

= 1 1 × 3 + 1 2 × 4 + 1 3 × 5 + ⋯ + 1 ( n − 1 ) × ( n + 1 ) + 1 n × ( n + 2 ) =\dfrac{1}{1\times3}+\dfrac{1}{2\times4}+\dfrac{1}{3\times5}+\cdots+\dfrac{1}{(n-1) \times (n+1)}+\dfrac{1}{n\times(n+2)} =1×31+2×41+3×51++(n1)×(n+1)1+n×(n+2)1

= 1 2 [ ( 1 − 1 3 ) + ( 1 2 − 1 4 ) + ( 1 3 − 1 5 ) + ⋯ + ( 1 n − 1 − 1 n + 1 ) + ( 1 n − 1 n + 2 ) ] =\dfrac{1}{2}[(1-\dfrac{1}{3})+(\dfrac{1}{2}-\dfrac{1}{4})+(\dfrac{1}{3}-\dfrac{1}{5})+\cdots+(\dfrac{1}{n-1}-\dfrac{1}{n+1})+(\dfrac{1}{n}-\dfrac{1}{n+2})] =21[(131)+(2141)+(3151)++(n11n+11)+(n1n+21)]

= 1 2 ( 1 + 1 2 − 1 n + 1 − 1 n + 2 ) =\dfrac{1}{2}(1+\dfrac{1}{2}-\dfrac{1}{n+1}-\dfrac{1}{n+2}) =21(1+21n+11n+21)

= 3 4 − 1 2 ( n + 1 ) − 1 2 ( n + 2 ) &lt; 3 4 . =\dfrac{3}{4}-\dfrac{1}{2(n+1)}-\dfrac{1}{2(n+2)}&lt;\dfrac{3}{4}. =432(n+1)12(n+2)1<43.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值