n元1次联立方程组
把
元1次方程组用一个
的矩阵按如下方式表示:
这里的
是系数项,
为常数。用矢量表示,即
1次方程组可以根据Cramer's fomula求解.
如果存在逆矩阵的话,上式可由:
本文介绍了数值解析中求解n元1次联立方程组的几种方法,包括直接解法如高斯消去法、高斯-约当法,以及迭代解法如雅可比法、高斯-塞德尔法和共轭梯度法。针对大型矩阵,直接解法计算量大,而迭代法适用于求近似解。还提到了用于前处理的三角分解法,如LU分解和Cholesky分解,并提供了Visual Studio 2010的源代码实现。
把
元1次方程组用一个
的矩阵按如下方式表示:
这里的
是系数项,
为常数。用矢量表示,即
1次方程组可以根据Cramer's fomula求解.
如果存在逆矩阵的话,上式可由:
4294

被折叠的 条评论
为什么被折叠?