💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理(进阶版)
⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!
⛄一、齿轮箱振动信号小波分析
1 研究背景和意义
机械没备中大部分都是旋转机械,尤其是齿箱属于易磨损部件,其运行状态不仅影响该机器设备本身的安全稳定运行,故障严重时会造成重大经济损失,因此对故障诊断技术的要求十分迫切。此外,在机械故障诊断中,可用于监测与诊断的信息很多,包括振动、温度、压力、位移、扭矩和变形等。其中,振动信号能够迅速、直接地反映机械设备的运行状态,据统计,70%以上的故障都是以振动形式表现出来的。通过对齿轮箱的振动信息进行综合分析,可以尝试找出齿轮箱故障位置。
2 测试方案设计
所采集信号为齿轮箱体的振动加速度信号,它是随时间连续变化的物理量。因此,要将这些信息送入计算机,就必须先将这些离散的物理量进行离散化,并进行量化编码,从而变成数字量。
3 齿轮箱振动信号小波分析的步骤
(1)对原信号进行FFT转换,得到频谱图。
(2)对原信号进行小波分析,得到高频部分。
(3)对高频部分进行FFT转换,得到频谱图。
(4)对比两个频谱图,找到齿轮的啮合频率。
(5)对信号进行小波分解去噪。
⛄二、部分源代码
function varargout = process_gui(varargin)
% PROCESS_GUI MATLAB code for process_gui.fig
% PROCESS_GUI, by itself, creates a new PROCESS_GUI or raises the existing
% singleton*.
%
% H = PROCESS_GUI returns the handle to a new PROCESS_GUI or the handle to
% the existing singleton*.
%
% PROCESS_GUI(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in PROCESS_GUI.M with the given input arguments.
%
% PROCESS_GUI(‘Property’,‘Value’,…) creates a new PROCESS_GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before process_gui_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to process_gui_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help process_gui
% Last Modified by GUIDE v2.5 29-Aug-2017 16:23:10
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @process_gui_OpeningFcn, …
‘gui_OutputFcn’, @process_gui_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% — Executes just before process_gui is made visible.
function process_gui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to process_gui (see VARARGIN)
% Choose default command line output for process_gui
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes process_gui wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% — Outputs from this function are returned to the command line.
function varargout = process_gui_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% — Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,‘String’)) returns listbox1 contents as cell array
% contents{get(hObject,‘Value’)} returns selected item from listbox1
% — Executes during object creation, after setting all properties.
function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end
% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
axes(handles.axes1) ;
cla reset
fs=2000*2.56; %
load data.mat
t=0:1/fs:(length(signal(1,:))-1)/fs; % ʱ Ϊ
signal_type = get(handles.signal,‘Value’) ;
switch signal_type
case 1
signaldo=signal(1,:);
case 2
signaldo=signal(2,:);
case 3
signaldo=signal(3,:);
case 4
signaldo=signal(4,:);
end
signalnew=wden(signaldo,‘minimaxi’,‘s’,‘mln’,5,‘sym5’); %С ֽ ȥ
axes(handles.axes1);
plot(t,signaldo,‘-b’);hold on;
plot(t,signalnew,‘-r’);
xlim([0,11]);ylabel(’ ٶ ');xlabel('ʱ 䣨s ');
legend(‘ȥ ǰ’,'ȥ ');
feature(1)=max(signalnew); % 1 max
feature(2)=min(signalnew); % 2 min
feature(3)=mean(signalnew); % 3 mean
feature(4)=var(signalnew); % 4
feature(5)=std(signalnew); % 5
set(handles.edit1,‘String’,num2str(feature(1)));
set(handles.edit2,‘String’,num2str(feature(2)));
set(handles.edit3,‘String’,num2str(feature(3)));
set(handles.edit4,‘String’,num2str(feature(4)));
set(handles.edit5,‘String’,num2str(feature(5)));
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a或2019b
2 参考文献
[1]李博健.改进LMD算法在管道泄漏中的应用研究[D].东北石油大学
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合