💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式
更多Matlab优化求解仿真内容点击👇
①Matlab优化求解(进阶版)
⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!
⛄一、蒙特卡洛算法简介
1 蒙特卡洛算法定义
蒙特卡洛(Monte Carlo)方法,在渲染中,我们经常听到术语“蒙特卡洛”(通常缩写为MC)。但是这是什么意思?实际上,它所指的是一个非常简单的想法,蒙特卡洛方法指的是一系列统计方法,这些方法本质上用于查找事物的解决方案,例如计算函数的期望值,或者对由于没有封闭形式而无法进行分析积分的函数进行积分。我们可以用该原理来解决不同的问题,并且针对这些问题中都可以关联不同的技术或算法。所有这些算法的共同点是它们使用随机(或随机)采样。
2 蒙特卡洛模拟法的原理
蒙特卡洛法(Monte Carlo)是统计试验计算方法,高斯正太分布的期望值µ决定函数分布位置,标准差σ决定函数分布幅度,其概率密度函数公式如下:
根据中心极限定理,当统计样本足够充足时,各独立同分布随机变量之和的分布趋近于高斯正态分布,且尺寸分布符合伯努利大数定律。因此,蒙特卡洛模拟法计算中所求数学期望即可通过函数f(x)的积分获取。
⛄二、部分源代码
%利用蒙特卡洛模拟法模拟出电动汽车负荷曲线
%同时求解出无序充电功率曲线,作为有序充电曲线的对比基础
clc;clear;
close all
Ntest=100;%仿真程序 车辆数
SOC_end=0.9;
Pbiao=15;%充电功率为15kW
nn=0.9;%充电效率为0.9
Pcharge=Pbiaonn;%实际充电的功率
Cbattery=30; %电池容量
distance=unifrnd(30,80,1,Ntest); %Ntest辆车 每辆车的单程距离
judge=0.15distance/Cbattery; %单程耗电SOC
SOC=rand(1,Ntest).*(1-judge)+judge; %初始SOC
timestart=8; %8点离家
timework=normrnd(8.5,0.5,1,Ntest); %到班时间,服从正态分布
timerest=normrnd(17.5,0.5,1,Ntest); %下班时间
timehome=normrnd(19,0.5,1,Ntest); %到家时间,由于上下班高峰路况复杂,所以不认为下班回家耗时与上班耗时相同
SOC=SOC-judge;
battery=SOC*Cbattery; %到班后的电量
time1=zeros(1,Ntest);
time2=zeros(1,Ntest);
%SOC记录数组
SOC_sa=ones(1,Ntest);
SOC_sb=ones(1,Ntest);
for i=1:Ntest
if SOC(i)<judge+0.2
SOC_sa(i)=SOC(i);
time1(i)=timework(i); %到班后需要充电,充电开始时间为到班时间
time2(i)=time1(i)+(1-SOC(i))Cbattery/Pcharge; %充电结束时间,充电功率Pcharge
SOC(i)=SOC_end; %下班前充满电
battery(i)=CbatterySOC(i);
end
end
SOC=SOC-judge;
battery=SOC*Cbattery; %到家后的电量
time3=zeros(1,Ntest);
time4=zeros(1,Ntest);
for i=1:Ntest
if SOC(i)<max(judge,0.4)
SOC_sb(i)=SOC(i);
time3(i)=timehome(i); %到家后需要充电,充电开始时间为到班时间
time4(i)=time3(i)+(1-SOC(i))Cbattery/Pcharge; %充电结束时间,充电功率4KW
SOC(i)=SOC_end; %第二天8点前可以充满电
battery(i)=CbatterySOC(i);
end
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]王锋.基于蒙特卡洛模拟法的动车组裙板装配优化研究[J].中国设备工程. 2020,(06)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合