https://blog.youkuaiyun.com/whut_ldz/article/details/78845947
pytorch中的pre-train函数模型引用及修改(增减网络层,修改某层参数等)
2017年12月19日 18:49:37 whut_ldz 阅读数:7421 标签: 深度学习 神经网络 pytorch 预训练 修改 更多
个人分类: python,pytorch,深度学习
一、pytorch中的pre-train模型
卷积神经网络的训练是耗时的,很多场合不可能每次都从随机初始化参数开始训练网络。
pytorch中自带几种常用的深度学习网络预训练模型,如VGG、ResNet等。往往为了加快学习的进度,在训练的初期我们直接加载pre-train模型中预先训练好的参数,model的加载如下所示:
-
import torchvision.models as models
-
#resnet
-
model = models.ResNet(pretrained=True)
-
model = models.resnet18(pretrained=True)
-
model = models.resnet34(pretrained=True)
-
model = models.resnet50(pretrained=True)
-
#vgg
-
model = models.VGG(pretrained=True)
-
model = models.vgg11(pretrained=True)
-
model = models.vgg16(pretrained=True)
-
model = models.vgg16_bn(pretrained=True)
二、预训练模型的修改
1.参数修改
对于简单的参数修改,这里以resnet预训练模型举例,resnet源代码在Github点击打开链接。
resnet网络最后一层分类层fc是对1000种类型进行划分,对于自己的数据集,如果只有9类,修改的代码如下:
-
# coding=UTF-8
-
import torchvision.models as models
-
#调用模型
-
model = models.resnet50(pretrained=True)
-
#提取fc层中固定的参数
-
fc_features = model.fc.in_features
-
#修改类别为9
-
model.fc = nn.Linear(fc_features, 9)
2.增减卷积层
前一种方法只适用于简单的参数修改,有的时候我们往往要修改网络中的层次结构,这时只能用参数覆盖的方法,即自己先定义一个类似的网络,再将预训练中的参数提取到自己的网络中来。这里以resnet预训练模型举例。
-
# coding=UTF-8
-
import torchvision.models as models
-
import torch
-
import torch.nn as nn
-
import math
-
import torch.utils.model_zoo as model_zoo
-
class CNN(nn.Module):
-
def __init__(self, block, layers, num_classes=9):
-
self.inplanes = 64
-
super(ResNet, self).__init__()
-
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
-
bias=False)
-
self.bn1 = nn.BatchNorm2d(64)
-
self.relu = nn.ReLU(inplace=True)
-
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
-
self.layer1 = self._make_layer(block, 64, layers[0])
-
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
-
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
-
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
-
self.avgpool = nn.AvgPool2d(7, stride=1)
-
#新增一个反卷积层
-
self.convtranspose1 = nn.ConvTranspose2d(2048, 2048, kernel_size=3, stride=1, padding=1, output_padding=0, groups=1, bias=False, dilation=1)
-
#新增一个最大池化层
-
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
-
#去掉原来的fc层,新增一个fclass层
-
self.fclass = nn.Linear(2048, num_classes)
-
for m in self.modules():
-
if isinstance(m, nn.Conv2d):
-
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
-
m.weight.data.normal_(0, math.sqrt(2. / n))
-
elif isinstance(m, nn.BatchNorm2d):
-
m.weight.data.fill_(1)
-
m.bias.data.zero_()
-
def _make_layer(self, block, planes, blocks, stride=1):
-
downsample = None
-
if stride != 1 or self.inplanes != planes * block.expansion:
-
downsample = nn.Sequential(
-
nn.Conv2d(self.inplanes, planes * block.expansion,
-
kernel_size=1, stride=stride, bias=False),
-
nn.BatchNorm2d(planes * block.expansion),
-
)
-
layers = []
-
layers.append(block(self.inplanes, planes, stride, downsample))
-
self.inplanes = planes * block.expansion
-
for i in range(1, blocks):
-
layers.append(block(self.inplanes, planes))
-
return nn.Sequential(*layers)
-
def forward(self, x):
-
x = self.conv1(x)
-
x = self.bn1(x)
-
x = self.relu(x)
-
x = self.maxpool(x)
-
x = self.layer1(x)
-
x = self.layer2(x)
-
x = self.layer3(x)
-
x = self.layer4(x)
-
x = self.avgpool(x)
-
#新加层的forward
-
x = x.view(x.size(0), -1)
-
x = self.convtranspose1(x)
-
x = self.maxpool2(x)
-
x = x.view(x.size(0), -1)
-
x = self.fclass(x)
-
return x
-
#加载model
-
resnet50 = models.resnet50(pretrained=True)
-
cnn = CNN(Bottleneck, [3, 4, 6, 3])
-
#读取参数
-
pretrained_dict = resnet50.state_dict()
-
model_dict = cnn.state_dict()
-
# 将pretrained_dict里不属于model_dict的键剔除掉
-
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
-
# 更新现有的model_dict
-
model_dict.update(pretrained_dict)
-
# 加载我们真正需要的state_dict
-
cnn.load_state_dict(model_dict)
-
# print(resnet50)
-
print(cnn)
以上就是相关的内容,本人刚入门的小白一枚,请轻喷~