除法&取模
设
n
n
n 次多项式
F
(
x
)
F(x)
F(x) 和
m
m
m 次多项式
G
(
x
)
G(x)
G(x) ,求
n
−
m
n-m
n−m 次多项式
Q
(
x
)
Q(x)
Q(x) 和
m
−
1
m-1
m−1 次多项式
R
(
x
)
R(x)
R(x) 满足
F
(
x
)
=
G
(
x
)
Q
(
x
)
+
R
(
x
)
F(x)=G(x)Q(x)+R(x)
F(x)=G(x)Q(x)+R(x)
于是我们有
F
(
1
x
)
=
G
(
1
x
)
Q
(
1
x
)
+
R
(
1
x
)
F(\frac{1}{x})=G(\frac{1}{x})Q(\frac{1}{x})+R(\frac{1}{x})
F(x1)=G(x1)Q(x1)+R(x1)
两遍同乘
x
n
x^n
xn :
x
n
F
(
1
x
)
=
x
m
G
(
1
x
)
x
n
−
m
Q
(
1
x
)
+
x
n
−
m
+
1
x
m
−
1
R
(
1
x
)
x^nF(\frac{1}{x})=x^mG(\frac{1}{x})x^{n-m}Q(\frac{1}{x})+x^{n-m+1}x^{m-1}R(\frac{1}{x})
xnF(x1)=xmG(x1)xn−mQ(x1)+xn−m+1xm−1R(x1)
对于
n
n
n 次多项式
A
(
x
)
A(x)
A(x) ,
x
n
A
(
1
x
)
x^nA(\frac{1}{x})
xnA(x1) 代表的是多项式系数对称交换,设其为
a
(
x
)
a(x)
a(x),则
f
(
x
)
=
g
(
x
)
q
(
x
)
+
x
n
−
m
+
1
r
(
x
)
f(x)=g(x)q(x)+x^{n-m+1}r(x)
f(x)=g(x)q(x)+xn−m+1r(x)
由于
Q
(
x
)
Q(x)
Q(x) 是
n
−
m
n-m
n−m 次多项式,于是式子满足
f
(
x
)
≡
g
(
x
)
q
(
x
)
(
m
o
d
x
n
−
m
+
1
)
f(x)\equiv g(x)q(x) \pmod{x^{n-m+1}}
f(x)≡g(x)q(x)(modxn−m+1)
于是
q
(
x
)
≡
f
(
x
)
g
(
x
)
(
m
o
d
x
n
−
m
+
1
)
q(x)\equiv \frac{f(x)}{g(x)} \pmod{x^{n-m+1}}
q(x)≡g(x)f(x)(modxn−m+1)
多项式求逆即可
于是我们可以求出
Q
(
x
)
Q(x)
Q(x) ,根据定义求出
R
(
x
)
R(x)
R(x) 即可
代码
#include <bits/stdc++.h>
using namespace std;
const int N=6e5+5,P=998244353;
int n,m,f[N],g[N],G[2]={3,(P+1)/3},A[N],B[N],t,p,re[N],d[N],q[N];
int X(int x){return x>=P?x-P:x;}
int K(int x,int y){
int z=1;
for (;y;y>>=1,x=1ll*x*x%P)
if (y&1) z=1ll*z*x%P;
return z;
}
void put(int *a,int l){
for (int i=0;i<=l;i++)
printf("%d",a[i]),
putchar(i<l?' ':'\n');
}
void pre(int l){
for (t=1,p=0;t<l;t<<=1,p++);
for (int i=0;i<t;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(p-1));
}
void Ntt(int *a,int o){
for (int i=0;i<t;i++)
if (i<re[i]) swap(a[i],a[re[i]]);
for (int wn,i=1;i<t;i<<=1){
wn=K(G[o],(P-1)/(i<<1));
for (int x,y,j=0;j<t;j+=(i<<1))
for (int w=1,k=0;k<i;k++,w=1ll*w*wn%P)
x=a[j+k],y=1ll*w*a[i+j+k]%P,
a[j+k]=X(x+y),a[i+j+k]=X(x-y+P);
}
if (o)
for (int i=0,v=K(t,P-2);i<t;i++)
a[i]=1ll*a[i]*v%P;
}
void inv(int *a,int *b,int l){
if (l==1){
b[0]=K(a[0],P-2);
return;
}
inv(a,b,(l+1)>>1);
for (int i=0;i<l;i++)
A[i]=a[i],B[i]=b[i];
pre(l<<1);Ntt(A,0);Ntt(B,0);
for (int i=0;i<t;i++)
A[i]=1ll*A[i]*B[i]%P*B[i]%P;
Ntt(A,1);
for (int i=0;i<l;i++)
b[i]=X(X(b[i]<<1)+P-A[i]);
for (int i=0;i<t;i++) A[i]=B[i]=0;
}
void dvs(int *f,int *g,int *q,int *d){
reverse(f,f+n+1);reverse(g,g+m+1);
inv(g,q,n-m+1);
for (int i=0;i<=n-m;i++)
A[i]=q[i],B[i]=f[i];
pre((n-m+1)<<1);Ntt(A,0);Ntt(B,0);
for (int i=0;i<t;i++)
A[i]=1ll*A[i]*B[i]%P;
Ntt(A,1);
for (int i=0;i<=n-m;i++) q[i]=A[i];
for (int i=0;i<t;i++) A[i]=B[i]=0;
reverse(q,q+n-m+1);
reverse(f,f+n+1);reverse(g,g+m+1);
for (int i=0;i<=m;i++) A[i]=g[i];
for (int i=0;i<=n-m;i++) B[i]=q[i];
pre(n+2);Ntt(A,0);Ntt(B,0);
for (int i=0;i<t;i++)
A[i]=1ll*A[i]*B[i]%P;
Ntt(A,1);
for (int i=0;i<m;i++)
d[i]=X(f[i]-A[i]+P);
for (int i=0;i<t;i++) A[i]=B[i]=0;
}
int main(){
cin>>n>>m;
for (int i=0;i<=n;i++)
scanf("%d",&f[i]);
for (int i=0;i<=m;i++)
scanf("%d",&g[i]);
dvs(f,g,q,d);
put(q,n-m);put(d,m-1);
return 0;
}