#PSM new
library(MatchIt)
setwd("C:/Users/jack/Desktop/mission/psm/1")
library(readxl)
plan1 <- as.data.frame(read_excel("plan1.xlsx",col_types = c("text","text","text","numeric","numeric","numeric","numeric","numeric","numeric",'text')))
plan1$ITEM_NAME[plan1$ITEM_NAME=='国产']<-1#国产是1,进口是0
plan1$ITEM_NAME[plan1$ITEM_NAME=='进口']<-0#国产是1,进口是0
#去重到人次
plan1<-plan1[!duplicated(plan1),]
library(MatchIt)
library(dplyr)
library(ggplot2)
#1 Pre-analysis using non-matched data
#1.1 Difference-in-means: outcome variable:出院方式
chisq.test(rbind(table(plan1$出院方式[plan1$ITEM_NAME==1]),table(plan1$出院方式[plan1$ITEM_NAME==0])))#p-value = 0.03613
#1.2 Difference-in-means: pre-treatment covariates
ecls_cov <- c('AGE', '生化-肾功能里的肌酐(用药前)', '生化-肝功能里的谷丙转氨酶(用药前)', '生化-肝功能里的谷草转氨酶(用药前)', '生化-肝功能里的总胆红素(用药前)' , '生化-肝功能里的直接胆红素(用药前)')
result0<-as.data.frame(
plan1 %>%
group_by(ITEM_NAME) %>%
select(one_of(ecls_cov)) %>%
summarise_all(funs(mean(., na.rm = T)))
)#连续变量的均值比较
tableGrob(result0)
chisq.test(rbind(table(plan1$SEX[plan1$ITEM_NAME==1]),table(plan1$SEX[plan1$ITEM_NAME==0])))
#组间男女比例差异:p-value = 0.1731
lapply(ecls_cov, function(v) {
t.test(plan1[, v] ~ plan1[, 'ITEM_NAME'])
})#连续变量的组间t检验,只有age显著差异
#before matching
library(pacman)
plan1$ITEM_NAME
pacman::p_load(tableone)
table1 <- CreateTableOne(vars = ecls_cov, data = plan1, strata = 'ITEM_NAME')
table1 <- print(table1, printToggle = FALSE, noSpaces = TRUE)
knitr::kable(table1[,1:3], align = 'c', caption = 'Comparison of unmatched samples')
#after matching
library(pacman)
plan1$ITEM_NAME
pacman::p_load(tableone)
table1 &