hdu5883 The Best Path

本文介绍了一个算法问题,目标是在特定条件下找到一条路径,使得路径上经过的每个湖泊的幸运数字通过异或操作得到的最大值。文章提供了完整的代码实现,并解释了如何使用并查集确定是否存在有效的路径,以及如何通过度数来确定可能的最大幸运数值。

The Best Path

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 798    Accepted Submission(s): 332


Problem Description
Alice is planning her travel route in a beautiful valley. In this valley, there are N lakes, and M rivers linking these lakes. Alice wants to start her trip from one lake, and enjoys the landscape by boat. That means she need to set up a path which go through every river exactly once. In addition, Alice has a specific number (a1,a2,...,an) for each lake. If the path she finds is P0P1...Pt, the lucky number of this trip would be aP0XORaP1XOR...XORaPt. She want to make this number as large as possible. Can you help her?
 

Input
The first line of input contains an integer t, the number of test cases. t test cases follow.

For each test case, in the first line there are two positive integers N (N100000) and M (M500000), as described above. The i-th line of the next N lines contains an integer ai(i,0ai10000) representing the number of the i-th lake.

The i-th line of the next M lines contains two integers ui and vi representing the i-th river between the ui-th lake and vi-th lake. It is possible that ui=vi.
 

Output
For each test cases, output the largest lucky number. If it dose not have any path, output "Impossible".
 

Sample Input
2 3 2 3 4 5 1 2 2 3 4 3 1 2 3 4 1 2 2 3 2 4
 

Sample Output
2 Impossible
 



题目的意思是遍历所有边,算出每个经历过的点异或起来最大值

首先并查集算出集合数,大于1不可能;然后判欧拉回路,若度为奇的大于2,则不可能,若度为奇的等于二,则路线固定,其所经历所有点,若等于零则枚举起点

这里有个小技巧,a^a=0,0^a=a 所以异或时重复经历的点只要判经历次数是否为奇数即可

另外有个坑的是位运算优先级较低,你写

for(int i=1; i<=n; i++)
                {
                    if(ans^a[i]>mx)
                        mx=ans^a[i];
                }
就会wa,它先会判断>再异或




#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define inf 0x3f3f3f3f
#define mod 10000007
#define maxn 100005

int a[maxn];
int p[maxn];
int pre[maxn];
int n,m,sz;

int fin(int x)
{
    if(x != pre[x])
        pre[x] = fin(pre[x]);
    return pre[x];
}

void unio(int x,int y)
{
    int x1=fin(x);
    int x2=fin(y);
    if(x1!=x2)
    {
        pre[x1]=x2;
        sz--;
    }
}

int main()
{
    int o,u,v;
    while(~scanf("%d",&o))
    {
        while(o--)
        {
            scanf("%d%d",&n,&m);
            for(int i=1; i<=n; i++)
            {
                scanf("%d",&a[i]);
            }
            memset(p,0,sizeof(p));
            for(int i=1; i<=n; i++)
            {
                pre[i]=i;
            }
            sz=n;

            for(int i=0; i<m; i++)
            {
                scanf("%d%d",&u,&v);
                unio(u,v);
                p[u]++;
                p[v]++;
            }

            if(sz>1)
            {
                printf("Impossible\n");
                continue;
            }

            int tot=0;
            for(int i=1; i<=n; i++)
            {
                if(p[i]%2==1)
                    tot++;
            }
            if(tot>2)
            {
                printf("Impossible\n");
            }
            else if(tot==2)
            {
                int ans=0;
                for(int i=1; i<=n; i++)
                {
                    if(((p[i]+1)/2)%2)
                        ans=ans^a[i];
                }
                printf("%d\n",ans);
            }
            else
            {
                int ans=0;
                for(int i=1; i<=n; i++)
                {
                    if(((p[i]+1)/2)%2) ans=ans^a[i];
                }
                int mx=0;
                for(int i=1; i<=n; i++)
                {
                    mx=max(mx,ans^a[i]);
                }
                printf("%d\n",mx);
            }
        }
    }
    return 0;
}



第五届广西省大学生程序设计竞赛K Kirby's challenge(AC代码) 分数 300 作者 Colin 单位 杭州电子科技大学 Description Recently, Colin bought a Switch for Eva. And they are playing "Kirby and the Forgotten Land". In a challenge mission, Kirby is in a 4×n grid. The row of it is numbered from 1 to 4, and the column of it is numbered from 1 to n. There are many keys in this grid. Let a x,y ​ represent the status of cell (x,y). If a x,y ​ =1, there is a key in (x,y). If a x,y ​ =0, there is no key in (x,y). Kirby starts at (1,1), and should reach (4,n). Moreover, Kirby must collect all the keys in the grid to open the door in (4,n). Kirby will collect the key at (x,y) when Kirby reach (x,y). Of course, Kirby will collect the key at (1,1) at the beginning. In a second, Kirby can move from (x,y) to (x+1,y),(x,y+1),(x−1,y). Or Kirby can stay at (x,y) and throw a returnable flying weapon(boomerang) to collect keys in the flying path. Kirby has two ways to throw the weapon. As the picture shows: image-20220604213457062.png The flying path is represented as the grey cells, so keys in the grey cells can be collected by the weapon. In a second, Kirby can only choose one way to throw the weapon, but Kirby can throw the weapon multiple times at (x,y) if necessary. Notice: Kirby can't get off the grid, but the weapon can fly outside the grid and keep the flying path. Please write a program to help Colin and Eva find the shortest time to complete the challenge mission, so that they can get more rewards. Input The first line contains one integer n (1≤n≤100). In the next 4 lines, the x-th line contains n integers a x,1 ​ ,a x,2 ​ ,⋯,a x,n ​ (0≤a x,y ​ ≤1). Output Print one integer representing the minimum number of seconds required to complete the challenge mission. Sample input 1 5 1 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 output 1 8 The best solution is: Spend 1 second to throw the weapon in the second way at (1,1), and spend 7 seconds to reach (4,5). 代码长度限制 16 KB 时间限制 1000 ms 内存限制 512 MB 栈限制 131072 KB
08-09
【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍了基于Matlab的建模与仿真方法。通过对四轴飞行器的动力学特性进行分析,构建了非线性状态空间模型,并实现了姿态与位置的动态模拟。研究涵盖了飞行器运动方程的建立、控制系统设计及数值仿真验证等环节,突出非线性系统的精确建模与仿真优势,有助于深入理解飞行器在复杂工况下的行为特征。此外,文中还提到了多种配套技术如PID控制、状态估计与路径规划等,展示了Matlab在航空航天仿真中的综合应用能力。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程技术人员,尤其适合研究生及以上层次的研究者。; 使用场景及目标:①用于四轴飞行器控制系统的设计与验证,支持算法快速原型开发;②作为教学工具帮助理解非线性动力学系统建模与仿真过程;③支撑科研项目中对飞行器姿态控制、轨迹跟踪等问题的深入研究; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注动力学建模与控制模块的实现细节,同时可延伸学习文档中提及的PID控制、状态估计等相关技术内容,以全面提升系统仿真与分析能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值