hdu5883 The Best Path

本文介绍了一个算法问题,目标是在特定条件下找到一条路径,使得路径上经过的每个湖泊的幸运数字通过异或操作得到的最大值。文章提供了完整的代码实现,并解释了如何使用并查集确定是否存在有效的路径,以及如何通过度数来确定可能的最大幸运数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Best Path

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 798    Accepted Submission(s): 332


Problem Description
Alice is planning her travel route in a beautiful valley. In this valley, there are N lakes, and M rivers linking these lakes. Alice wants to start her trip from one lake, and enjoys the landscape by boat. That means she need to set up a path which go through every river exactly once. In addition, Alice has a specific number (a1,a2,...,an) for each lake. If the path she finds is P0P1...Pt, the lucky number of this trip would be aP0XORaP1XOR...XORaPt. She want to make this number as large as possible. Can you help her?
 

Input
The first line of input contains an integer t, the number of test cases. t test cases follow.

For each test case, in the first line there are two positive integers N (N100000) and M (M500000), as described above. The i-th line of the next N lines contains an integer ai(i,0ai10000) representing the number of the i-th lake.

The i-th line of the next M lines contains two integers ui and vi representing the i-th river between the ui-th lake and vi-th lake. It is possible that ui=vi.
 

Output
For each test cases, output the largest lucky number. If it dose not have any path, output "Impossible".
 

Sample Input
2 3 2 3 4 5 1 2 2 3 4 3 1 2 3 4 1 2 2 3 2 4
 

Sample Output
2 Impossible
 



题目的意思是遍历所有边,算出每个经历过的点异或起来最大值

首先并查集算出集合数,大于1不可能;然后判欧拉回路,若度为奇的大于2,则不可能,若度为奇的等于二,则路线固定,其所经历所有点,若等于零则枚举起点

这里有个小技巧,a^a=0,0^a=a 所以异或时重复经历的点只要判经历次数是否为奇数即可

另外有个坑的是位运算优先级较低,你写

for(int i=1; i<=n; i++)
                {
                    if(ans^a[i]>mx)
                        mx=ans^a[i];
                }
就会wa,它先会判断>再异或




#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define inf 0x3f3f3f3f
#define mod 10000007
#define maxn 100005

int a[maxn];
int p[maxn];
int pre[maxn];
int n,m,sz;

int fin(int x)
{
    if(x != pre[x])
        pre[x] = fin(pre[x]);
    return pre[x];
}

void unio(int x,int y)
{
    int x1=fin(x);
    int x2=fin(y);
    if(x1!=x2)
    {
        pre[x1]=x2;
        sz--;
    }
}

int main()
{
    int o,u,v;
    while(~scanf("%d",&o))
    {
        while(o--)
        {
            scanf("%d%d",&n,&m);
            for(int i=1; i<=n; i++)
            {
                scanf("%d",&a[i]);
            }
            memset(p,0,sizeof(p));
            for(int i=1; i<=n; i++)
            {
                pre[i]=i;
            }
            sz=n;

            for(int i=0; i<m; i++)
            {
                scanf("%d%d",&u,&v);
                unio(u,v);
                p[u]++;
                p[v]++;
            }

            if(sz>1)
            {
                printf("Impossible\n");
                continue;
            }

            int tot=0;
            for(int i=1; i<=n; i++)
            {
                if(p[i]%2==1)
                    tot++;
            }
            if(tot>2)
            {
                printf("Impossible\n");
            }
            else if(tot==2)
            {
                int ans=0;
                for(int i=1; i<=n; i++)
                {
                    if(((p[i]+1)/2)%2)
                        ans=ans^a[i];
                }
                printf("%d\n",ans);
            }
            else
            {
                int ans=0;
                for(int i=1; i<=n; i++)
                {
                    if(((p[i]+1)/2)%2) ans=ans^a[i];
                }
                int mx=0;
                for(int i=1; i<=n; i++)
                {
                    mx=max(mx,ans^a[i]);
                }
                printf("%d\n",mx);
            }
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值