HDU 5883 The Best Path 【欧拉路】

本文介绍了一个图论问题——如何在一个带有权值的图中找到一条经过所有边恰好一次且使节点权值异或和最大的路径。文章详细解释了如何判断路径存在的条件,并提供了一种高效的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                            The Best Path

                                         Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)

Problem Description

Alice is planning her travel route in a beautiful valley. In this valley, there are N lakes, and M rivers linking these lakes. Alice wants to start her trip from one lake, and enjoys the landscape by boat. That means she need to set up a path which go through every river exactly once. In addition, Alice has a specific number (a1,a2,...,an ) for each lake. If the path she finds is P0→P1→...→Pt , the lucky number of this trip would be aP0XORaP1XOR...XORaPt . She want to make this number as large as possible. Can you help her?

Input

The first line of input contains an integer t , the number of test cases. t test cases follow.

For each test case, in the first line there are two positive integers N (N≤100000) and M (M≤500000) , as described above. The i -th line of the next N lines contains an integer ai(∀i,0≤ai≤10000) representing the number of the i -th lake.

The i -th line of the next M lines contains two integers ui and vi representing the i -th river between the ui -th lake and vi -th lake. It is possible that ui=vi .

Output

For each test cases, output the largest lucky number. If it dose not have any path, output "Impossible".

Sample Input

2
3 2
3
4
5
1 2
2 3
4 3
1
2
3
4
1 2
2 3
2 4

 

Sample Output

2

Impossible

 

【题目链接】 The Best Path

【题意】

有一个图,n个节点,m条边,每个点有一个权值,现在你需要把所有边不重复地都走一遍,求经过点的最大异或和

【思路】

能一次性走完,说明这个图有是欧拉图或半欧拉图(有欧拉回路或通路),那么根据定义可知,欧拉回路要求图中所有点的度数为偶数,欧拉通路要求图中有两个点的度数为奇数,其余均为偶数,据此可以判断出路径是否存在(注意判断图的连通性)

首先对于欧拉通路来说,起点和终点一定是奇度顶点,那么每个点经过的次数为度数除2向上取整(deg[i]+1)/2,由于异或的特殊性质,我们只要把经过次数为奇数的点的权值异或起来即可。

对于欧拉回路来说,起点会多经过一次,我们我们只要枚举起点,跟上面的结果疑惑一下,更新最大值即可

#include <cstdio>
#include <bits/stdc++.h>
#include <cmath>
#include <map>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
#define mst(a,b) memset((a),(b),sizeof(a))
#define rush() int T;scanf("%d",&T);while(T--)

typedef  long long ll;
const int maxn = 100005;
const ll mod = 1e18+7;
const int INF = 1e9;
const double eps = 1e-6;

int n,m;
int pre[maxn],a[maxn];
int deg[maxn];

int find(int x)
{
    int t,r=x;
    while(x!=pre[x]) x=pre[x];
    while(r!=x)
    {
        t=pre[r];
        pre[r]=x;
        r=t;
    }
    return x;
}

int main()
{
    rush()
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++) scanf("%d",&a[i]),pre[i]=i,deg[i]=0;
        for(int i=0;i<m;i++)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            deg[x]++,deg[y]++;
            pre[find(x)]=pre[find(y)];
        }
        int num=0;
        int odd=0;
        for(int i=1;i<=n;i++)
        {
            if(find(i)==i) num++;
            if(deg[i]&1) odd++;
        }
        if(num>1||!(odd==0||odd==2))
        {
            puts("Impossible");
            continue;
        }
        int ans=0;
        for(int i=1;i<=n;i++)
        {
            deg[i]=(deg[i]+1)/2;
            if(deg[i]&1) ans^=a[i];
        }
        if(odd==0)
        {
            int tmp=ans;
            for(int i=1;i<=n;i++) ans=max(ans,tmp^a[i]);
        }
        printf("%d\n",ans);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值