The Best Path
Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 801 Accepted Submission(s): 335
Problem Description
Alice is planning her travel route in a beautiful valley. In this valley, there are
N
lakes, and
M
rivers linking these lakes. Alice wants to start her trip from one lake, and enjoys the landscape by boat. That means she need to set up a path which go through every river exactly once. In addition, Alice has a specific number (
a1,a2,...,an
) for each lake. If the path she finds is
P0→P1→...→Pt
, the lucky number of this trip would be
aP0XORaP1XOR...XORaPt
. She want to make this number as large as possible. Can you help her?
Input
The first line of input contains an integer
t
, the number of test cases.
t
test cases follow.
For each test case, in the first line there are two positive integers N (N≤100000) and M (M≤500000) , as described above. The i -th line of the next N lines contains an integer ai(∀i,0≤ai≤10000) representing the number of the i -th lake.
The i -th line of the next M lines contains two integers ui and vi representing the i -th river between the ui -th lake and vi -th lake. It is possible that ui=vi .
For each test case, in the first line there are two positive integers N (N≤100000) and M (M≤500000) , as described above. The i -th line of the next N lines contains an integer ai(∀i,0≤ai≤10000) representing the number of the i -th lake.
The i -th line of the next M lines contains two integers ui and vi representing the i -th river between the ui -th lake and vi -th lake. It is possible that ui=vi .
Output
For each test cases, output the largest lucky number. If it dose not have any path, output "Impossible".
Sample Input
2 3 2 3 4 5 1 2 2 3 4 3 1 2 3 4 1 2 2 3 2 4
Sample Output
2 Impossible
Source
Recommend
题意:给你连通图,问存不存在一条路只经过所有的边一次,如果存在,lucky number为每经过一个点一次就异或一次的最后答案,求最大的lucky number。
思路:连通图经过所有边一次,就是欧拉路的定义。相同的数异或的话是等于0的,所以很容易可以推出每个点的贡献值为((num[i]+1)/2)%2*value[i],num为度数,value为点权值,有一种特殊情况就是形成了欧拉回路,回路的话起点的贡献值要多算一次,也就是还得异或value[i],所以如果存在欧拉回路我们还要枚举每个点作为起点来算。下面给代码:
#include<set>
#include<map>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
typedef long long LL;
using namespace std;
#define inf 0x3f3f3f3f
#define maxn 100005
typedef long long LL;
int value[maxn],num[maxn];
int main(){
int t;
scanf("%d",&t);
while(t--){
int n,m;
scanf("%d%d",&n,&m);
memset(num,0,sizeof(num));
for(int i=1;i<=n;i++){
scanf("%d",&value[i]);
}
for(int i=0;i<m;i++){
int u,v;
scanf("%d%d",&u,&v);
num[u]++;
num[v]++;
}
int sum=0;
for(int i=1;i<=n;i++){
if(num[i]%2){
sum++;
}
}
if(sum!=0&&sum!=2){
printf("Impossible\n");
}
else{
int ans=0;
for(int i=1;i<=n;i++){
if(((num[i]+1)/2)%2){
ans^=value[i];
}
}
if(!sum){
int re=0;
for(int i=1;i<=n;i++){
int now=ans^value[i];
re=max(now,re);
}
ans=re;
}
printf("%d\n",ans);
}
}
}