2022(一等奖)基于哨兵2影像的典型地表参量和红边指数的特征空间石漠化遥感监测模型

该研究以贵州省毕节市七星关区为对象,利用 Sentinel-2 影像数据,提取6个地表参量构建特征空间,建立石漠化监测模型。通过模型反演和精度验证,确定最优模型为 MSAVI-BI 模型,具有91.20%的总体精度和0.89的 Kappa 系数。研究还运用地理探测器分析了石漠化的驱动因子,揭示了自然和人为因素的影响,其中坡度、土地利用和人口是关键影响因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作品介绍

1 监测模型设计概述

(1)应用背景

石漠化是危害人们安全的自然灾害之一,也是土壤荒漠化其中的一种。我国西南地区是全球石漠化现象最严重的地区之一,长期的人为干预使得生态环境变得非常敏感,地表植被破坏严重,致使生态环境脆弱,石漠化带来了区域范围内的水土流失、湖泊和河流、森林等生态系统功能退化等一系列生态问题。

虽然石漠化严重、难治理,但通过合理的监测手段可使石漠化得到有效遏制。随着现代遥感技术、地理科学技术以及地理信息图谱技术的发展,我国对于石漠化监测信息系统也逐渐完善起来,通过对监测数据进行石漠化演变趋势监测分析,可以揭示不同时间石漠化的变化特征,更加系统的了解石漠化的时空演变规律,进而推断未来可能发展趋势,有利于管理部门对治理效果做出全面、及时、准确的判断,辅助其科学、高效的决策,可以帮助我们更好的解决石漠化问题,更有利于国家的安全与长久发展。 

因此,本研究选择了位于贵州省毕节市的七星关区作为研究区域对象,对区域石漠化程度开展动态监测和管理,为我国西南喀斯特地区的环境保护与生态平衡发展提供了技术手段。

(2)设计意义

前人多基于单因子指数法、综合因子指数法对石漠化的空间分布进行监测,没有很好的考虑石漠化各影响因子之间的交互作用,也

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sky J

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值