clickhouse 优化实践,万级别QPS数据毫秒写入和亿级别数据秒级返回 | 京东云技术团队

1、背景

魔笛活动平台目前在采集每个活动的用户行为数据并进行查询,解决线上问题定位慢,响应不及时的问题,提升客诉的解决效率。目前每天采集的数据量5000万+,一个月的数据总量15亿+,总数据量40亿+,随着接入的活动越来越多,采集上报的数据量也会越来越大。目前采用ClickHouse来存储数据,可以在秒级别内处理数十亿条数据,能够达到50MB-200MB/s的写入吞吐能力,按照每行100Byte估算,大约相当于50W-200W条/s的写入速度。这里关于ClickHouse就不再赘述,感兴趣的可以看上篇文章。这里是我在实际使用过程中,发现了一些写入和查询的相关问题,并进行了相应的优化。

2、写入优化

2.1 历史方案

为了更好的收集活动数据,自己开发了一款埋点sdk用于收集各业务的活动埋点数据,埋点数据统一异步发送MQ,然后活动平台消费MQ数据,经过一定处理后通过MybatisPlus方式批量写入clickhouse,每次批量写入5000条。

2.2 出现的问题

当消费MQ的TPS超过3000的时候,出现了以下问题:

1. **出现报错:**写入量大的时候会报这个错误:too many parts。

2. **单次写入条数少:**我明明配置的每次批量写入5000条,但是每次基本都是一条一条写入。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值