洛谷题解1087FBI 树

题目描述

我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。

FBI树是一种二叉树,它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2^N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:

  1. T的根结点为R,其类型与串S的类型相同;
  2. 若串SS的长度大于1,将串S从中间分开,分为等长的左右子串S_1和S_2​;由左子串S_1构造R的左子树T_1​,由右子串S_2S2​构造RR的右子树T_2。

现在给定一个长度为2^N2N的“0101”串,请用上述构造方法构造出一棵FBIFBI树,并输出它的后序遍历序列。

输入格式

第一行是一个整数N(0≤N≤10),

第二行是一个长度为2^N的“01”串。

输出格式

一个字符串,即FBI树的后序遍历序列。

输入输出样例

输入 

3
10001011

输出

IBFBBBFIBFIIIFF

#include<bits/stdc++.h>
using namespace std;
int n;
char t[1000005];
string s;
void build(int k,string ss)
{
    bool f1=0,f0=0;
    for(int i=0;i<ss.length();i++)
    {
    if(ss[i]=='1') f1=1;
    else f0=1;
    }
    if(f1==1&&f0==1) t[k]='F';
    else if(f1==1) t[k]='I';
	else t[k]='B';
    int len=ss.length();
	if(len==1) return ;
 
### 题目解答与算法解析 是一个广受欢迎的在线编程学习平台,提供大量算法题目题解资源。针对不同的问题,用户可以选择适合自己的算法进行练习或解决问题。 #### DFS(深度优先搜索)在题目中的应用 DFS是一种经典的回溯算法,通常用于解决迷宫类问题或者路径探索问题。例如,在P1605题目中,使用DFS可以统计从起点到终点的所有可行路径数量。通过递归实现对每个方向的探索,并在满足条件时继续深入,直到到达目标点。以下代码展示了如何实现这一逻辑: ```cpp int dir[4][2] = {0, 1, 1, 0, 0, -1, -1, 0}; // 方向数组 bool check(int nx, int ny) { return nx >= 1 && nx <= n && ny >= 1 && ny <= m; } void dfs(int x, int y) { vis[x][y] = true; for (int i = 0; i < 4; i++) { int nx = x + dir[i][0]; int ny = y + dir[i][1]; if (check(nx, ny) && vis[nx][ny] == false && map[nx][ny] != '#') { dfs(nx, ny); } } vis[x][y] = false; // 回溯 } ``` 上述代码中,`dir`数组定义了四个方向的增量,`check`函数判断坐标是否合法,而`dfs`函数则递归地遍历所有可能的路径并进行回溯[^3]。 #### Dijkstra算法的应用 Dijkstra算法是解决最短路径问题的经典方法,适用于图中节点之间的加权边。以最小体力消耗为例,相邻格子的差值作为代价,可以通过构建小根堆来优化路径选择。具体来说,将每个节点的代价存储在堆中,并按照代价从小到大排序,逐步扩展路径直至找到目标点。以下是Dijkstra算法的核心部分: ```cpp struct Node { int x, y, cost; bool operator<(const Node& other) const { return cost > other.cost; } }; priority_queue<Node> pq; void dijkstra() { pq.push({start_x, start_y, 0}); dist[start_x][start_y] = 0; while (!pq.empty()) { Node current = pq.top(); pq.pop(); if (current.x == target_x && current.y == target_y) break; for (int i = 0; i < 4; i++) { int nx = current.x + dir[i][0]; int ny = current.y + dir[i][1]; if (check(nx, ny)) { int new_cost = abs(grid[nx][ny] - grid[current.x][current.y]); if (dist[nx][ny] > dist[current.x][current.y] + new_cost) { dist[nx][ny] = dist[current.x][current.y] + new_cost; pq.push({nx, ny, dist[nx][ny]}); } } } } } ``` 在此代码中,`Node`结构体定义了节点的信息,包括坐标当前代价;`priority_queue`实现了小根堆的功能,确保每次取出代价最小的节点进行扩展[^2]。 #### 回溯算法在经典题目中的运用 回溯算法是解决组合、排列等问题的重要工具。例如,在N皇后问题中,通过尝试在每一行放置一个皇后,并检查是否满足列对角线的约束条件,最终找出所有合法的布局方案。以下是N皇后问题的核心代码: ```cpp bool is_safe(int row, int col) { for (int i = 0; i < row; i++) { if (board[i] == col || abs(row - i) == abs(col - board[i])) { return false; } } return true; } void solve(int row) { if (row == n) { solutions++; return; } for (int col = 0; col < n; col++) { if (is_safe(row, col)) { board[row] = col; solve(row + 1); } } } ``` 此代码中,`is_safe`函数检查当前位置是否安,`solve`函数递归地尝试每一列的可能性,并在找到完整解后增加计数器[^3]。 #### 总结 DFS、Dijkstra以及回溯算法题目中均有广泛应用。DFS适合处理路径探索数量统计问题,Dijkstra适用于最短路径问题,而回溯算法则擅长解决组合、排列等需要穷举可能性的问题。掌握这些算法及其变种对于提升编程能力至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值