题面
To improve the organization of his farm, Farmer John labels each of his N (1 <= N <= 5,000) cows with a distinct serial number in the range 1…20,000. Unfortunately, he is unaware that the cows interpret some serial numbers as better than others. In particular, a cow whose serial number has the highest prime factor enjoys the highest social standing among all the other cows.
(Recall that a prime number is just a number that has no divisors except for 1 and itself. The number 7 is prime while the number 6, being divisible by 2 and 3, is not).
Given a set of N (1 <= N <= 5,000) serial numbers in the range 1…20,000, determine the one that has the largest prime factor.
Input
* Line 1: A single integer, N
* Lines 2…N+1: The serial numbers to be tested, one per line
Output
* Line 1: The integer with the largest prime factor. If there are more than one, output the one that appears earliest in the input file.
Sample Input
4
36
38
40
42
Sample Output
38
题目大意
给定N个数,求出其具有最大素因数的数,注意,是输出具有最大素因数的数,而不是最大素因数,若具有多个,则输出最先出现的那一个。
题目分析
这算是埃氏筛的模板题吧……
注意到范围是[1,20000][1,20000][1,20000],这个范围我们可以先用埃氏筛(nloglognn\log \log nnloglogn),先求出20000以内的素数,然后每输入一个数就枚举所有比它小的素数,找出最大素因子。然后与上一个最大素因子比较,若比原来的大,就保存下来。不比原来的大就丢弃就行了。
代码
#include <cstdio>
#include <cstring>
using namespace std;
bool fact[20001];
int prime[20001];
int a[5001];
int main(int argc, char const *argv[]) {
memset(fact, 1, sizeof(fact));
for(int i = 2; i < 20001; i++){
if(fact[i]){
for(int j = 2 * i; j < 20001; j += i)
fact[j] = 0;
}
}
int cnt = 0;
for(int i = 2; i < 20001; i++){
if(fact[i])
prime[cnt++] = i;
}
int n;
while(~scanf("%d", &n)){
int r = -1, yz = -1;
for(int i = 0; i < n; i++){
int t = 0, m;
scanf("%d", &m);
for(int j = 0; j < cnt && prime[j] <= m; j++){
if(!(m % prime[j]))
t = prime[j];
}
if(t > yz){
r = m;
yz = t;
}
}
printf("%d\n", r);
}
return 0;
}