Problem Description
To improve the organization of his farm, Farmer John labels each of his N (1 <= N <= 5,000) cows with a distinct serial number in the range 1..20,000. Unfortunately, he is unaware that the cows interpret some serial numbers as better than others. In particular, a cow whose serial number has the highest prime factor enjoys the highest social standing among all the other cows.
(Recall that a prime number is just a number that has no divisors except for 1 and itself. The number 7 is prime while the number 6, being divisible by 2 and 3, is not).
Given a set of N (1 <= N <= 5,000) serial numbers in the range 1..20,000, determine the one that has the largest prime factor.
Input
* Line 1: A single integer, N
* Lines 2..N+1: The serial numbers to be tested, one per line
Output
* Line 1: The integer with the largest prime factor. If there are more than one, output the one that appears earliest in the input file.
Sample Input
4 36 38 40 42
Sample Output
38
解析
给n个数给你,让你找到一个数它的因子是某个质数(所有数的质数因子最大的一个),然后输出这个数。
38的质数因子19是4(3、19、5、7)个数里面最大的所以输出38.
注意:如果有两个质数因子相同,输出先出现的。在这个题目条件下,1也视为质数。
对于每个数,我们都需要去求质数因子,过程是重复的。
所以我们先把数据范围内的素数先求出来,然后用数余素数(素数大到小),得到的就是这个数的最大质数因子。
(避免了求素数过程的重复)
代码
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <cmath>
using namespace std;
const int ran=20005;
int prime[ran],mark[ran],cnt=2;
int main()
{
int i,j;
prime[0]=1;
prime[1]=2;
for(i=3;i<=ran;i++)//预处理素数
{
if(mark[i]) continue;
int stat=1,k=2;
for(j=2;j<sqrt(i)+1;j++)
if(i%j==0)
{
stat=0;
break;
}
if(stat) prime[cnt++]=i;
while(i*k<=ran)
mark[i*k]=1,k++;
}
int T;
while(~scanf("%d",&T))
{
int maxn=0,ans,n;
while(T--)
{
scanf("%d",&n);
for(i=cnt-1;i>=0;i--)//找最大质数因子
if(n%prime[i]==0)
{
if(prime[i]>maxn)//记录数和它的最大质数因子
{
maxn=prime[i];
ans=n;
}
break;
}
}
printf("%d\n",ans);
}
}