R2_A_Taming the Herd

在本篇博客中,我们将探讨如何解决一个有趣的算法问题:修复受损的奶牛出逃记录,通过分析剩余的记录来确定奶牛可能的最少和最多出逃次数。这个问题涉及到逻辑推理和序列分析,我们将分享一种有效的解决方案。

题面

Taming the Herd

Early in the morning, Farmer John woke up to the sound of splintering wood. It was the cows, and they were breaking out of the barn again!

Farmer John was sick and tired of the cows’ morning breakouts, and he decided enough was enough: it was time to get tough. He nailed to the barn wall a counter tracking the number of days since the last breakout. So if a breakout occurred in the morning, the counter would be 00 that day; if the most recent breakout was 33 days ago, the counter would read 33. Farmer John meticulously logged the counter every day.

The end of the year has come, and Farmer John is ready to do some accounting. The cows will pay, he says! But lo and behold, some entries of his log are missing!

Farmer John is confident that the he started his log on the day of a breakout. Please help him determine, out of all sequences of events consistent with the log entries that remain, the minimum and maximum number of breakouts that may have take place over the course of the logged time.

Input

The first line contains a single integer NN (1≤N≤1001≤N≤100), denoting the number of days since Farmer John started logging the cow breakout counter.

The second line contains NN space-separated integers. The iith integer is either −1−1, indicating that the log entry for day ii is missing, or a non-negative integer aiai (at most 100100), indicating that on day ii the counter was at aiai.

Output

If there is no sequence of events consistent with Farmer John’s partial log and his knowledge that the cows definitely broke out of the barn on the morning of day 11, output a single integer −1−1. Otherwise, output two space-separated integers mm followed by MM, where mm is the minimum number of breakouts of any consistent sequence of events, and MM is the maximum.

Example

input

4
-1 -1 -1 1

output

2 3

Note

In this example, we can deduce that a breakout had to occur on day 3. Knowing that a breakout also occurred on day 1, the only remaining bit of uncertainty is whether a breakout occurred on day 2. Hence, there were between 2 and 3 breakouts in total.

题目大意

J用数字记录下了奶牛什么时候进行破坏。比如1是代表1天前进行了破坏,0代表今天进行破坏。但是这个记录损坏了,出现了一些-1,-1可以代表任意数字。任务是求奶牛进行破坏的次数的最大值与最小值。如果这份记录有矛盾,则输出-1。

题目分析

根据那些大于0的数字,我们可以去确定一些-1的具体数值。那么我们可以由那些数字倒着推回来。每当我们得到一个大于0的数n,那么前n天的记录也就清楚了,唯一确定了。当前n天的中如果出现有0的出现,那么我们比如可以确定,这份记录有矛盾。

代码

#include <cstdio>
using namespace std;
const int maxn = 1e5;
typedef long long ll;
int arr[107];
int main(int argc, char const *argv[]) {
  int n;
  scanf("%d", &n);
  for(int i = 0; i < n; i++)
    scanf("%d", &arr[i]);
  arr[0] = 0;
  bool flag = false;
  for(int i = 0; i < n; i++){
    // printf("%d\n", i);
    if(flag) break;

    if(arr[i] > 0){
      if(i - arr[i] < 0){flag = true; break;}
      if(arr[i - arr[i]] > 0) {
        flag = true;
        break;
      }else{
        for(int j = i - arr[i], cnt = 0; j < i; j++, cnt++){
          if(arr[j] == 0 && j != i - arr[i]){flag = true; break;}
          arr[j] = cnt;
        }
      }
    }
  }
  if(flag)
    printf("%d\n", -1);
  else{
    int fu = 0, zero = 0;
    for(int i = 0; i < n; i++){
      if(arr[i] == 0)
        zero++;
      if(arr[i] == -1)
        fu++;
    }
    printf("%d %d\n", zero, zero + fu);
  }
  return 0;
}

内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值