R2_A_Taming the Herd

在本篇博客中,我们将探讨如何解决一个有趣的算法问题:修复受损的奶牛出逃记录,通过分析剩余的记录来确定奶牛可能的最少和最多出逃次数。这个问题涉及到逻辑推理和序列分析,我们将分享一种有效的解决方案。

题面

Taming the Herd

Early in the morning, Farmer John woke up to the sound of splintering wood. It was the cows, and they were breaking out of the barn again!

Farmer John was sick and tired of the cows’ morning breakouts, and he decided enough was enough: it was time to get tough. He nailed to the barn wall a counter tracking the number of days since the last breakout. So if a breakout occurred in the morning, the counter would be 00 that day; if the most recent breakout was 33 days ago, the counter would read 33. Farmer John meticulously logged the counter every day.

The end of the year has come, and Farmer John is ready to do some accounting. The cows will pay, he says! But lo and behold, some entries of his log are missing!

Farmer John is confident that the he started his log on the day of a breakout. Please help him determine, out of all sequences of events consistent with the log entries that remain, the minimum and maximum number of breakouts that may have take place over the course of the logged time.

Input

The first line contains a single integer NN (1≤N≤1001≤N≤100), denoting the number of days since Farmer John started logging the cow breakout counter.

The second line contains NN space-separated integers. The iith integer is either −1−1, indicating that the log entry for day ii is missing, or a non-negative integer aiai (at most 100100), indicating that on day ii the counter was at aiai.

Output

If there is no sequence of events consistent with Farmer John’s partial log and his knowledge that the cows definitely broke out of the barn on the morning of day 11, output a single integer −1−1. Otherwise, output two space-separated integers mm followed by MM, where mm is the minimum number of breakouts of any consistent sequence of events, and MM is the maximum.

Example

input

4
-1 -1 -1 1

output

2 3

Note

In this example, we can deduce that a breakout had to occur on day 3. Knowing that a breakout also occurred on day 1, the only remaining bit of uncertainty is whether a breakout occurred on day 2. Hence, there were between 2 and 3 breakouts in total.

题目大意

J用数字记录下了奶牛什么时候进行破坏。比如1是代表1天前进行了破坏,0代表今天进行破坏。但是这个记录损坏了,出现了一些-1,-1可以代表任意数字。任务是求奶牛进行破坏的次数的最大值与最小值。如果这份记录有矛盾,则输出-1。

题目分析

根据那些大于0的数字,我们可以去确定一些-1的具体数值。那么我们可以由那些数字倒着推回来。每当我们得到一个大于0的数n,那么前n天的记录也就清楚了,唯一确定了。当前n天的中如果出现有0的出现,那么我们比如可以确定,这份记录有矛盾。

代码

#include <cstdio>
using namespace std;
const int maxn = 1e5;
typedef long long ll;
int arr[107];
int main(int argc, char const *argv[]) {
  int n;
  scanf("%d", &n);
  for(int i = 0; i < n; i++)
    scanf("%d", &arr[i]);
  arr[0] = 0;
  bool flag = false;
  for(int i = 0; i < n; i++){
    // printf("%d\n", i);
    if(flag) break;

    if(arr[i] > 0){
      if(i - arr[i] < 0){flag = true; break;}
      if(arr[i - arr[i]] > 0) {
        flag = true;
        break;
      }else{
        for(int j = i - arr[i], cnt = 0; j < i; j++, cnt++){
          if(arr[j] == 0 && j != i - arr[i]){flag = true; break;}
          arr[j] = cnt;
        }
      }
    }
  }
  if(flag)
    printf("%d\n", -1);
  else{
    int fu = 0, zero = 0;
    for(int i = 0; i < n; i++){
      if(arr[i] == 0)
        zero++;
      if(arr[i] == -1)
        fu++;
    }
    printf("%d %d\n", zero, zero + fu);
  }
  return 0;
}

C语言-光伏MPPT算法:电导增量法扰动观察法+自动全局搜索Plecs最大功率跟踪算法仿真内容概要:本文档主要介绍了一种基于C语言实现的光伏最大功率点跟踪(MPPT)算法,结合电导增量法与扰动观察法,并引入自动全局搜索策略,利用Plecs仿真工具对算法进行建模与仿真验证。文档重点阐述了两种经典MPPT算法的原理、优缺点及其在不同光照和温度条件下的动态响应特性,同时提出一种改进的复合控制策略以提升系统在复杂环境下的跟踪精度与稳定性。通过仿真结果对比分析,验证了所提方法在快速性和准确性方面的优势,适用于光伏发电系统的高效能量转换控制。; 适合人群:具备一定C语言编程基础和电力电子知识背景,从事光伏系统开发、嵌入式控制或新能源技术研发的工程师及高校研究人员;工作年限1-3年的初级至中级研发人员尤为适合。; 使用场景及目标:①掌握电导增量法与扰动观察法在实际光伏系统中的实现机制与切换逻辑;②学习如何在Plecs中搭建MPPT控制系统仿真模型;③实现自动全局搜索以避免传统算法陷入局部峰值问题,提升复杂工况下的最大功率追踪效率;④为光伏逆变器或太阳能充电控制器的算法开发提供技术参考与实现范例。; 阅读建议:建议读者结合文中提供的C语言算法逻辑与Plecs仿真模型同步学习,重点关注算法判断条件、步长调节策略及仿真参数设置。在理解基本原理的基础上,可通过修改光照强度、温度变化曲线等外部扰动因素,进一步测试算法鲁棒性,并尝试将其移植到实际嵌入式平台进行实验验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值