【漫话机器学习系列】088.常见的输出层激活函数(Common Output Layer Activation Functions)

在神经网络中,输出层(Output Layer) 的激活函数(Activation Function)直接决定了模型的输出形式,并影响损失函数的选择及训练效果。不同的任务类型(如分类或回归)需要使用不同的激活函数,以确保输出结果符合问题要求。

本文将详细介绍 二元分类(Binary Classification)、多分类(Multi-class Classification)和回归(Regression)任务中常用的输出层激活函数,并提供相应的代码示例。


1. 输出层激活函数概述

根据任务类型,输出层常用的激活函数如下:

任务类型 常见激活函数 输出值范围
二元分类 sigmoid (0,1)
多分类 softmax (0,1) 且所有类别概率之和为 1
回归 无激活函数(线性输出) (-∞, +∞)

接下来,我们分别介绍这些激活函数的作用、数学公式、特点及代码实现。


2. 二元分类:Sigmoid 函数

2.1 介绍

Sigmoid 函数常用于二元分类问题,其数学公式如下:

\sigma(x) = \frac{1}{1 + e^{-x}}

  • 该函数将输出值映射到 (0,1) 之间,适用于概率预测。
  • \sigma(x) > 0.5,通常预测为正类(1),否则为负类(0)

2.2 代码示例

PyTorch 实现二元分类
import torc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值