算法设计与分析: 3-22 有向树独立k中值问题

本文介绍了有向树独立k中值问题,涉及一棵有向树,每个顶点有服务需求量和权值,边长表示运输费用。目标是在树中增设k个独立服务机构,最小化服务转移费用。问题与动态规划相关,并提供了Java编程实现的输入输出说明。

3-22 有向树独立k中值问题


问题描述

给定一棵有向树 T,树 T 中每个顶点 u 都有一个权 w(u);树的每条边(u,v)也都有一个 非负边长 d(u,v)。有向树 T 的每个顶点 u 可以看作客户,其服务需求量为 w(u)。每条边(u,v) 的边长 d(u,v) 可以看作运输费用。如果在顶点 u 处未设置服务机构,则将顶点 u 处的服务 需求沿有向树的边(u,v)转移到顶点 v 处服务机构需付出的服务转移费用为 w(u)*d(u,v)。 树根处已设置了服务机构,现在要在树 T 中增设 k 处独立服务机构,使得整棵树 T 的服务转 移费用最小。服务机构的独立性是指任何 2 个服务机构之间都不存在有向路经。

对于给定的有向树 T,编程计算在树 T 中增设 k 处独立服务机构的最小服务转移费用。

数据输入:
第 1 行有 2 个正整数 n 和 k。n 表示有向树 T 的边数;k
是要增设的服务机构数。有向树 T 的顶点编号为 0,1,…,n。根结点编号为 0。接下来的 n 行中,每行有表示有向树 T 的一条有向边的 3 个整数。第 i+1 行的 3 个整数 wi,vi,diwi,vi,di 分别表 示编号为 i 的顶点的权为 wiwi,相应的有向边为(i,vi)(i,vi),其边长为 didi


Java

import java.util.Scanner;

class BiNode{
    int w,wx,d,wd,dep;
    int[] cost;
    BiNode parent,left,right;
}

public class YouXiangShuDuLiKZhongZhi {

    private static int n,k;
    private static BiNode[] subt;

    public static void main(String[] args){
        Scanner input = new Scanner(System.in);
        int a,b,c;

        while (true){
            n = input.nextInt();
            k = input.nextInt();

            subt = new BiNode[n+1];

            for(int i=0; i<=n; i++)
                subt[i] = new BiNode();

            for(int i=1; i<=n; i++){
                a = input.nextInt();
                b = input.nextInt();
                c = input.nextInt();
                subt[i].w = a;
                subt[i].wx = a;
                subt[i].d = c;
                BiNode p = findc(subt[b]);
                BiNode q = new BiNode();
                p.left = subt[i];
                p.right = q;
                subt[i].parent = p;
                q.parent = p;
            }

            sd(subt[0]);
            sw(subt[0]);

            System.out.println(solution());
        }
    }

    private static int solution(){
        PostOrderComp(subt[0]);
        return subt[0].cost[k];
    }

    private static void PostOrderComp(BiNode t){
        if(t != null){
            PostOrderComp(t.left);
            PostOrderComp(t.right);
            comp(t);
        }
    }

    private static void comp(BiNode t){
        if(t.left == null){
            t.cost[0] = t.wd;
            for(int i=1; i<=k; i++)
                t.cost[i] = 0;
        }else
            for(int i=0; i<=k; i++) {
                t.cost[i] = t.wd - t.w * t.d;
                for (int a = 0; a <= i; a++) {
                    int tmp = t.left.cost[a] + t.right.cost[i-a] + t.wx * t.d;
                    if (t.cost[i] > tmp)
                        t.cost[i] = tmp;
                }
            }
    }


    private static void sw(BiNode t){
        PostOrder(t);
    }

    private static void PostOrder(BiNode t){
        if(t != null){
            PostOrder(t.left);
            PostOrder(t.right);
            addw(t);
        }
    }

    private static void addw(BiNode t){
        t.wd = t.w * t.d;
        if(t.left != null){
            t.w += t.left.w;
            t.w += t.right.w;
            t.wd += t.left.wd;
            t.wd += t.right.wd;
        }
    }

    private static void sd(BiNode t){
        PreOrder(t);
    }

    private static void PreOrder(BiNode t){
        if(t != null){
            adddep(t);
            PreOrder(t.left);
            PreOrder(t.right);
        }
    }

    private static void adddep(BiNode t){
        if(t.parent != null)
            t.dep = t.parent.dep + 1;
        t.cost = new int[k+1];

        if(t.parent != null)
            t.d += t.parent.d;
    }

    private static BiNode findc(BiNode q){
        while (q!=null && q.right!=null)
            q = q.right;
        return q;
    }
}

Input & Output

4 2
1 0 1
1 1 10
10 2 5
1 2 3
12

Reference

王晓东《计算机算法设计与分析》(第3版)P97

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值