拯救莫莉斯

问题描述

莫莉斯·乔是圣域里一个叱咤风云的人物,他凭借着自身超强的经济头脑,牢牢控制了圣域的石油市场。

圣域的地图可以看成是一个n*m的矩阵。每个整数坐标点(x , y)表示一座城市(1<=x<= n, 1<=y<=m)。两座城市间相邻的定义为:对于城市(Ax, Ay)和城市(Bx, By),满足(Ax - Bx)2 + (Ay - By)2 = 1。

由于圣域的石油贸易总量很大,莫莉斯意识到不能让每笔石油订购单都从同一个油库里发货。为了提高效率,莫莉斯·乔决定在其中一些城市里建造油库,最终使得每一个城市X都满足下列条件之一:

1.该城市X内建有油库,

2.某城市Y内建有油库,且城市X与城市Y相邻。

与地球类似,圣域里不同城市间的地价可能也会有所不同,所以莫莉斯想让完成目标的总花费尽可能少。如果存在多组方案,为了方便管理,莫莉斯会选择建造较少的油库个数。

输入格式

第一行两个正整数n,m ( n * m <= 50 且m<=n),表示矩阵的大小。

接下来一个n行m列的矩阵F,Fi, j表示在城市(i,j)建造油库的代价。

输出格式

输出两个数,建造方案的油库个数和方案的总代价。

 

输入样例:

输出样例:

3 3

6 5 4

1 2 3

7 8 9

3 6

数据范围

对于30%数据满足 n * m <= 25;

对于100%数据满足n * m <= 50; 0 <= Fi, j <= 100000

输入

考试的时候一看这题,就想用费用流水过去,一开始过了样例,感觉很对的想法,后来发现边建错了,各种调都没能调出来,果然,考试的时候先打个暴力很重要的

f[i][j][k]表示前i位,i-1位状态为j,i位状态为k时最小花费,这里的状态表示建油库的状态,

f[i+1][k][x]=f[i][j][k] (x|k|j|k>>1|k<<1)&((1<<m)-1)==(1<<m)-1 表示保证第i-1行全都有油

对于0-》1的转移特殊处理,并不需要满足上面的条件

最后要特别注意优先级

#include<iostream>
#include<cstdio>
#include<cstring>
#define INF 100000000
using namespace std;
int n,m;
int a[55][55],cost[55][(1<<8)+5],cnt[(1<<8)+5];
int f[55][(1<<8)+5][(1<<8)+5],g[55][(1<<8)+5][(1<<8)+5];
void turn(int x,int n)
{
     int s[35]={0};
     int num=0;
     while(x){
         s[++num]=x%2;
         x/=2;     
     }
     for(int i=n;i>num;i--) cout<<"0";
     for(int i=num;i>=1;i--) cout<<s[i];
     cout<<endl;
}
void read()
{
     scanf("%d%d",&n,&m);
     for(int i=1;i<=n;i++)
       for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
     for(int j=0;j<(1<<m);j++)
       for(int k=1;k<=m;k++)
         if((1<<k-1)&j) cnt[j]++;
     for(int i=1;i<=n;i++)
       for(int j=0;j<(1<<m);j++){
          for(int k=1;k<=m;k++)
          if((1<<k-1)&j){ 
             cost[i][j]+=a[i][k];
          }
       }
}
int main()
{
    //freopen("in.txt","r",stdin);
   // freopen("proj.in","r",stdin);
   // freopen("proj.out","w",stdout);
    read();
    memset(f,0xf,sizeof(f));
    f[0][0][0]=0;g[0][0][0]=0;
    for(int i=0;i<=n+1;i++)
      for(int j=0;j<(1<<m);j++)//i-1
        for(int k=0;k<(1<<m);k++)//i
          for(int x=0;x<(1<<m);x++)//i+1
          if(i!=0&&f[i][j][k]<INF)
          {
            if(((j|k|x|(k<<1)|(k>>1))&((1<<m)-1))==((1<<m)-1))
            {
               if(f[i+1][k][x]>f[i][j][k]+cost[i+1][x])
               {
                   f[i+1][k][x]=f[i][j][k]+cost[i+1][x];  
                   g[i+1][k][x]=g[i][j][k]+cnt[x];                             
               }                                 
               else
                 if(f[i+1][k][x]==f[i][j][k]+cost[i+1][x]){
                   g[i+1][k][x]=min(g[i+1][k][x],g[i][j][k]+cnt[x]);                                          
                 }
            }
          }
          else
          {
               if(f[i+1][k][x]>f[i][j][k]+cost[i+1][x])
               {
                   f[i+1][k][x]=f[i][j][k]+cost[i+1][x];  
                   g[i+1][k][x]=g[i][j][k]+cnt[x]; 
                           
               }                                 
               else
                 if(f[i+1][k][x]==f[i][j][k]+cost[i+1][x])
                   g[i+1][k][x]=min(g[i+1][k][x],g[i][j][k]+cnt[x]);                                          
          }
    int ans=0x7fffffff;
    int cnt=0;
    for(int i=0;i<(1<<m);i++){
      if(ans>f[n+1][i][0]){ 
        ans=f[n+1][i][0];
        cnt=g[n+1][i][0];
      }
      else if(ans==f[n+1][i][0]) cnt=min(cnt,g[n+1][i][0]);
    }
    printf("%d %d",cnt,ans);
    //while(1);
    return 0;
}


数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值