强连通分量之tarjan算法

强连通分量问题通常可归纳为要求出强连通分量,然后通过缩点(将得出的每个连通分量视为一个点,然后继续构图,例如连通分量A有一个点有一条边指向连通分量B的一个点,那么在A上搭一条边到B,其他连通分量也以此类推)。求图的强连通分量一个算法为tarjan,在http://www.byvoid.com/blog/scc-tarjan/这博客中对tarjan的算法描述得非常的详细。我这里转载方便自己以后看

[有向图强连通分量]

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

image

直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文介绍的是Tarjan算法。

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

算法伪代码如下

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

image

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

image

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

image

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

image

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。

附:tarjan算法的C++程序

强连通分量题目

poj1236 问题一是问最少给几个学校发文件能让所有学校都能经过传阅能阅读这个文件,其实就是求出强连通分量后缩点后入度为0的点的个数。因为只有入度为0的强连通分量中的学校无法经过其他点的传阅得到文件。第二问题问要最少增加几条边使得给任一个学校发文件经过传阅其他学校都能共享这个文件。这其实就是求缩点后的图的入度为0的点的个数与出度为0的个数中的较大者。(这里要注意的时候当只有一个点的时候入度出度都为0,但却不需要搭边)代码:

<think>好的,我现在需要给用户介绍C++中的Tarjan强连通分量算法。首先,我得回忆一下Tarjan算法的基本概念和步骤,确保自己理解正确。 Tarjan算法是由Robert Tarjan提出的,用于寻找有向图中的强连通分量(SCC)。强连通分量指的是图中最大的子图,其中任意两个顶点都可以互相到达。这个算法使用深度优先搜索(DFS)来遍历图,并通过维护一个栈和一些辅助数组来跟踪节点的访问状态。 接下来,我应该分步骤详细说明算法的实现过程。首先,每个节点都有一个索引(index)和低链接值(lowlink)。索引表示节点被访问的顺序,低链接值是该节点能回溯到的最早访问的节点的索引。当某个节点的低链接值等于其索引时,说明找到了一个强连通分量,需要将栈中的节点弹出,直到当前节点为止,这些节点组成一个SCC。 然后,我需要考虑如何在C++中实现这个算法。通常会用邻接表来表示图结构,使用栈来保存当前路径上的节点,以及两个数组来存储索引和低链接值。还需要一个布尔数组来记录节点是否在栈中,以避免重复处理。 可能会遇到的问题包括如何初始化这些数组,如何处理未访问的节点,以及在DFS过程中如何更新低链接值。例如,当访问一个已经在栈中的节点时,需要比较当前节点的低链接值和目标节点的索引,取较小值来更新当前的低链接值。 此外,需要注意递归DFS的实现细节,比如递归终止条件,以及何时将节点弹出栈并记录SCC。代码示例需要清晰,变量命名要合理,确保用户能够理解每一步的作用。 最后,我应该测试一下这个算法,比如使用一个简单的有向图来验证输出是否正确。例如,对于包含四个节点的图,边为0→1,1→2,2→0,1→3,算法应该输出两个SCC:{0,1,2}和{3}。 在编写代码示例时,要注意注释和格式,帮助用户理解关键步骤。同时,要提醒用户关于时间复杂度的部分,Tarjan算法的时间复杂度是O(V+E),适合处理较大的图结构。 总结下来,我需要结构清晰地介绍算法原理、步骤,并提供可运行的C++代码示例,确保用户能够理解并实现该算法。同时,要检查是否有遗漏的关键点,比如栈的使用和低链接值的更新逻辑,确保解释准确无误。</think>以下是关于Tarjan强连通分量算法的逐步说明和C++实现: **算法核心思想** 1. 通过DFS遍历图时维护一个栈 2. 使用两个关键数组: - $index[]$ 记录访问顺序 - $lowLink[]$ 记录能回溯到的最早节点 3. 当$lowLink[u] == index[u]$时,栈顶到当前节点的元素构成一个SCC **算法步骤** 1. 初始化全局计数器和标记数组 2. 对未访问的节点进行DFS 3. 每次DFS时: - 设置当前节点的index和lowLink - 将节点压入栈并标记在栈中 4. 遍历邻接节点: - 如果未访问,递归访问并更新lowLink - 如果已在栈中,更新lowLink值 5. 发现根节点时弹出栈中元素构成SCC **C++实现代码** ```cpp #include <vector> #include <stack> #include <algorithm> using namespace std; vector<vector<int>> sccTarjan(vector<vector<int>>& graph) { int n = graph.size(), index = 0; vector<int> indexMap(n, -1), lowLink(n, -1); vector<bool> onStack(n, false); stack<int> st; vector<vector<int>> scc; auto dfs = [&](auto self, int u) -> void { indexMap[u] = lowLink[u] = index++; st.push(u); onStack[u] = true; for(int v : graph[u]) { if(indexMap[v] == -1) { // 未访问 self(self, v); lowLink[u] = min(lowLink[u], lowLink[v]); } else if(onStack[v]) { // 已在栈中 lowLink[u] = min(lowLink[u], indexMap[v]); } } if(lowLink[u] == indexMap[u]) { // 发现SCC vector<int> component; while(true) { int v = st.top(); st.pop(); onStack[v] = false; component.push_back(v); if(v == u) break; } scc.push_back(component); } }; for(int i = 0; i < n; ++i) { if(indexMap[i] == -1) { dfs(dfs, i); } } return scc; } ``` **算法特征** - 时间复杂度:$O(V + E)$(线性时间) - 空间复杂度:$O(V)$(栈和辅助数组) - 特点:单次DFS即可找出所有SCC **使用示例** ```cpp // 构造图:0→1→2→0,1→3 vector<vector<int>> graph = { {1}, // 0 {2,3}, // 1 {0}, // 2 {} // 3 }; auto components = sccTarjan(graph); // 输出结果:[[3], [0,1,2]] ``` **应用场景** 1. 编译器中的代码优化 2. 电子电路分析 3. 社交网络社群发现 4. 代码依赖分析 5. 强连通性检测 关键理解点:$lowLink[u]$的更新策略既包含前向边的更新(递归返回时),也包含横向边的更新(遇到栈中节点时),这保证了能正确识别环路结构。当某个节点的lowLink等于其index值时,说明找到了环路的根节点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值