洛谷P1040 加分二叉树——————简单区间DP

本文探讨了加分二叉树问题,这是一种区间动态规划的应用,旨在寻找中序遍历已知且加分最高的二叉树。文章详细介绍了算法原理,通过枚举区间长度和起点,动态规划求解每个区间的最优解,最终输出最高加分和前序遍历。

P1040 加分二叉树

题目描述
设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第ii个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。

若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;

(1)tree的最高加分

(2)tree的前序遍历

输入格式:
第1行:1个整数n(n<30),为节点个数。

第2行:n个用空格隔开的整数,为每个节点的分数(分数 <100)。

输出格式:
第1行:1个整数,为最高加分(Ans ≤ 4,000,000,000)。

第2行:n个用空格隔开的整数,为该树的前序遍历。

输入样例:
5
5 7 1 2 10
输出样例:
145
3 1 2 4 5


做洛谷搜索题的时候遇到的,也可以用区间DP解决,
简单地区间DP,是我会的第二道区间dp问题 /xk.

这道题只给了树的中序遍历,我们并不知道树长什么样子,不过我们可以根据树节点值来构造一个符合题意的树,

详情请看洛谷大佬的题解

code:

#include<bits/stdc++.h>
using namespace std;

int a[33];
int sum[33];
int dp[33][33],root[33][33];

void print(int l, int r)
{
        if(l > r)       return ;
        printf("%d ",root[l][r]);
        if(l == r)      return ;
        print(l,root[l][r]-1);
        print(root[l][r]+1,r);
}
int main()
{
        // freopen("../in.txt","r",stdin);
        // freopen("../out.txt","w",stdout);
        int n;
        cin>>n;
        for(int i=1;i<=n;++i)
        {
                cin>>a[i];
                dp[i][i] = a[i];
                dp[i][i-1] = 1;//
                root[i][i] = i;
        }
        for(int len = 1; len <= n; ++len)//枚举区间长度
                for(int j = 1; j + len <= n; ++j)//枚举区间起点
                {
                        int ends = j + len;
                        dp[j][ends] = dp[j+1][ends] + dp[j][j];//默认左子树不存在
                        root[j][ends] = j;//默认从起点选取根
                        for(int i = j + 1; i < ends; ++i)//枚举根
                                if(dp[j][ends] < dp[j][i-1] * dp[i+1][ends] + dp[i][i])
                                {
                                        dp[j][ends] = dp[j][i-1] * dp[i+1][ends] + dp[i][i];
                                        root[j][ends] = i;//该范围的根是i
                                }
                }
        cout<<dp[1][n]<<endl;
        print(1,n);
        return 0;
}

### 解题思路 洛谷 P1404 加分二叉树是一道经典的动态规划问题,涉及树形结构和区间 DP 的思想。以下是解题的核心思路: #### 1. 状态定义 定义 `dp[l][r]` 表示以节点编号从 `l` 到 `r` 的子树所能获得的最大加分[^3]。 同时需要记录每个区间的根节点位置 `root[l][r]`,以便后续构造前序遍历。 #### 2. 状态转移方程 对于区间 `[l, r]`,枚举根节点 `k`(`l <= k <= r`),则状态转移方程为: ```plaintext dp[l][r] = max(dp[l][r], dp[l][k-1] * dp[k+1][r] + d[k]) ``` 其中: - `dp[l][k-1]` 表示左子树的最高加分。 - `dp[k+1][r]` 表示右子树的最高加分。 - `d[k]` 表示当前根节点的分数。 边界条件为: - 当 `l > r` 时,表示空子树,其加分1。 - 当 `l == r` 时,表示叶子节点,其加分为 `d[l]`。 #### 3. 构造前序遍历 通过记录的 `root[l][r]` 数组,可以递归地构造出树的前序遍历结果。具体方法是从根节点开始,依次访问左子树和右子树。 --- ### 代码实现 以下是基于上述思路的 Python 实现: ```python def solve(): n = int(input()) # 节点个数 d = list(map(int, input().split())) # 每个节点的分数 INF = float(&#39;inf&#39;) # 初始化 dp 和 root 数组 dp = [[0] * (n + 2) for _ in range(n + 2)] root = [[0] * (n + 2) for _ in range(n + 2)] # 边界条件:空子树的加分1 for i in range(1, n + 2): dp[i][i - 1] = 1 # 区间 DP for length in range(1, n + 1): # 子树长度 for l in range(1, n - length + 2): # 左端点 r = l + length - 1 # 右端点 for k in range(l, r + 1): # 枚举根节点 tmp = dp[l][k - 1] * dp[k + 1][r] + d[k - 1] if tmp > dp[l][r]: dp[l][r] = tmp root[l][r] = k # 构造前序遍历 def preorder(l, r): if l > r: return "" k = root[l][r] res = str(k) res += " " + preorder(l, k - 1) res += " " + preorder(k + 1, r) return res.strip() # 输出结果 print(dp[1][n]) # 最高加分 print(preorder(1, n)) # 前序遍历 # 示例运行 solve() ``` --- ### 复杂度分析 - **时间复杂度**:O(n&sup3;),其中 `n` 是节点个数。三层循环分别枚举区间长度、左端点和根节点。 - **空间复杂度**:O(n&sup2;),用于存储 `dp` 和 `root` 数组。 --- ### 注意事项 1. 输入数据需满足题目要求,确保节点编号和分数合法。 2. 记忆化搜索或动态规划均能解决问题,但动态规划更直观且易于实现。 3. 在构造前序遍历时,注意处理空子树的情况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值