原创 | 文 BFT机器人

01
背景
本文的背景是关于自适应视觉目标跟踪的研究。在传统的跟踪方法中,通常采用基于检测的方式,即尝试学习一个分类器来区分目标对象和其周围的背景。然而,这种方法存在一些问题,例如需要手动选择特征和参数,容易受到噪声和目标变化的影响。
为了解决这些问题,本文提出了一种新的自适应跟踪框架,该框架基于结构化输出预测。具体而言,作者采用了核化结构化输出支持向量机(SVM)在线学习的方法来实现自适应跟踪。这种方法的关键优势在于不需要手动选择特征和参数,从而减轻了使用者的负担,并且能够有效地处理目标的变化和噪声。
该自适应跟踪框架的原理是,通过结构化输出预测的方式,将目标跟踪问题转化为学习目标与背景之间的关系。这样的处理方式使得模型能够更好地适应目标的变化,并且能够减少噪声的影响。核化结构化输出支持向量机的在线学习方法则能够在不断接收新数据的情况下,不断更新模型,进一步提高跟踪的准确性和鲁棒性。
为了验证该方法的性能,作者进行了一系列实验。实验结果表明,这种基于结构化输出预测的自适应跟踪框架相比传统方法,在跟踪准确性和鲁棒性方

文章介绍了一种名为Struck的自适应跟踪算法,该算法利用核化结构化输出支持向量机进行在线学习,以适应目标变化和噪声。实验表明,Struck在跟踪性能和鲁棒性上优于传统方法,特别是在处理目标变化方面表现出色。
最低0.47元/天 解锁文章
1635

被折叠的 条评论
为什么被折叠?



