面试官狂问的28个RAG问题全解析:从基础到架构优化

文章系统梳理了RAG技术的28个高频面试问题,涵盖基础认知、常见问题、高级机制、优化策略及未来发展方向。内容从RAG基本概念入手,详细解析了内容缺失、文档排序、上下文整合等核心问题,深入探讨了RAG-Fusion机制,并提供了完整的优化策略。文章旨在帮助读者系统掌握RAG技术原理与应用,全面应对AI岗位面试,同时展望了RAG技术与多模态、知识图谱等方向的融合发展。


导语

最近不少霍格沃兹测试开发学社的学员在面试 AI 岗时反馈,RAG(检索增强生成)成了面试的“常客题”。

面试官的问题五花八门,从“为什么内容缺失”到“RAG-Fusion 怎么工作”,甚至还要你分析“RAG 与 SFT 的区别”。

别慌。

这篇文章我们就系统梳理 28 个高频面试问题,直接带你理解 RAG 从“原理 → 问题 → 优化 → 未来”的完整演化逻辑,确保你下一次面试不被问懵。


一、RAG 基础认知篇

问题 1:什么是 RAG?

RAG,全称 Retrieval-Augmented Generation,是一种结合“外部知识检索”和“大语言模型生成”的混合架构。它先从知识库中检索相关文档,再让模型基于这些文档生成回答。

问题 2:RAG 的好处是什么?

能降低幻觉(Hallucination),让回答更贴近事实;还能节省训练成本,无需让模型“死记硬背”海量数据。

问题 3:RAG vs SFT 有何区别?

SFT(监督微调)是在模型内部“灌知识”;RAG 是让模型“查资料”。 一个靠记忆,一个靠检索。RAG 的优势是更新快、灵活;SFT 的优势是推理更自然。


二、RAG 常见问题篇(核心 10 大坑)

这部分是面试最容易被问、也最容易踩坑的地方。

问题 4:内容缺失问题

常见原因:切片策略不合理、向量召回率低、知识覆盖不全。

解决思路:调整分段长度、使用多向量检索、增加索引质量评估。

问题 5:错过排名靠前的文档

召回算法问题。可优化向量距离计算方式(如 cosine → dot-product)或引入 rerank 模型。

问题 6:脱离上下文——整合策略的限制

拼接多个文档时,语义边界丢失。解决方案:采用 Context Window Re-weighting 或基于语义的拼接。

问题 7:未能提取答案

常发生在检索结果太广或太窄。需调整相似度阈值,并使用 Prompt 工程引导“必须基于引用回答”。

问题 8:格式错误

源数据清洗不规范,或 LLM 输出未结构化。解决:统一索引格式、在 Prompt 中约束输出模板。

问题 9:特异性错误

RAG 在特定领域(如法律、医学)容易被误导。需引入领域词向量或知识图谱增强。

问题 10:回答不全面

检索召回范围太小。可结合多通道检索(keyword + embedding)。

问题 11:数据处理能力的挑战

尤其在非结构化文档中,提取慢。优化点:批量向量化、流式索引、分布式检索。

问题 12:结构化数据查询的难题

RAG 对 SQL 或表格支持弱。解决:混合架构——让 LLM 先生成查询语句再执行。

问题 13:复杂 PDF 提取困难

PDF 通常带有表格、页眉、脚注。解决方案:布局识别(LayoutLM)+ OCR + 坐标级切分。


三、RAG 高级机制篇

问题 14:备用模型机制

在召回失败或 LLM 输出异常时启用备用小模型,可提高鲁棒性。

问题 15:LLM 安全挑战

如 Prompt 注入、越权访问。解决:过滤输入、分级鉴权、脱敏数据。


四、RAG-Fusion 深入篇

问题 16:为什么需要 RAG-Fusion?

单一检索通道无法覆盖所有语义方向,RAG-Fusion 融合多种检索结果,提高覆盖率与稳定性。

问题 17:RAG-Fusion 的核心技术?

多通道检索(embedding + keyword + rerank)+ 答案融合(voting / re-generation)机制。

问题 18:RAG-Fusion 工作流程?

简单说:多个 RAG 并行检索 → 汇总候选 → 加权融合 → LLM 最终生成。

问题 19:RAG-Fusion 的优势与不足?

优势:更全、更准、更稳。 不足:成本高、延迟大、工程实现复杂。


五、RAG 优化策略篇

问题 20:RAG 各模块优化策略?

  • 检索:语义分段 + 向量融合
  • 生成:动态上下文选择 + Prompt 约束
  • 存储:向量压缩 + 版本管理

问题 21:RAG 架构优化?

引入缓存层(Redis / Milvus)、支持流式检索、模块化部署(Index / Query / Generation 独立扩展)。

问题 22:RAG 索引优化?

优化向量生成(使用 instruction embedding)、增量索引更新、去重。

问题 23:RAG 索引数据优化?

统一数据格式、冗余去除、文本归一化(大小写、符号、编码)。


六、RAG 发展与展望篇

问题 24:RAG 未来发展方向?

走向多模态(图文音视频)、强化 Agent 自主检索、结合在线学习(Online Fine-tuning)。

问题 25:LLM 已具备强大能力,还存在什么不足?

事实一致性差、上下文记忆短、隐性偏见未消除。RAG 是现实中的“补脑”方案。


七、补充篇:面试延展问题(3个彩蛋)

问题 26:RAG 的局限性?

检索依赖质量、上下文融合难、生成速度慢。

问题 27:RAG 有哪些优点?

实时性强、可解释性好、维护成本低。

问题 28:RAG 未来可能与哪些技术融合?

GraphRAG(知识图谱结合)、Self-RAG(自我优化)、AgentRAG(工具驱动检索)。


🧭 一图总览:RAG 体系结构


那么,如何系统的去学习大模型LLM?

如果你也想系统学习AI大模型技术,想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习*_,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。
为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和MoPaaS魔泊云联合梳理打造了系统大模型学习脉络,这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️

在这里插入图片描述

【大模型全套视频教程】

教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。

从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。

同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!

在这里插入图片描述

深耕 AI 领域技术专家带你快速入门大模型

跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!

在这里插入图片描述

【精选AI大模型权威PDF书籍/教程】

精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。

在这里插入图片描述

【AI 大模型面试题 】

除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。

【大厂 AI 岗位面经分享(92份)】

图片

【AI 大模型面试真题(102 道)】

图片

【LLMs 面试真题(97 道)】

图片

【640套 AI 大模型行业研究报告】

在这里插入图片描述

【AI大模型完整版学习路线图(2025版)】

明确学习方向,2025年 AI 要学什么,这一张图就够了!

img

👇👇点击下方卡片链接免费领取全部内容👇👇

在这里插入图片描述

抓住AI浪潮,重塑职业未来!

科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。

行业趋势洞察:

  • 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
  • 人才争夺战: 拥有3-5年经验、扎实AI技术功底真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
  • 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。

与其观望,不如行动!

面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。

在这里插入图片描述

01 为什么分享这份学习资料?

当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。

因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!

我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。

*02 这份资料的价值在哪里?*

专业背书,系统构建:

  • 本资料由我与MoPaaS魔泊云的鲁为民博士共同整理。鲁博士拥有清华大学学士美国加州理工学院博士学位,在人工智能领域造诣深厚:

    • 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇
    • 拥有多项中美发明专利。
    • 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
  • 目前,我有幸与鲁博士共同进行人工智能相关研究。

在这里插入图片描述

内容实用,循序渐进:

  • 资料体系化覆盖了从基础概念入门核心技术进阶的知识点。

  • 包含丰富的视频教程实战项目案例,强调动手实践能力。

  • 无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考助力你提升技术能力,向大模型相关岗位转型发展

    在这里插入图片描述在这里插入图片描述在这里插入图片描述

抓住机遇,开启你的AI学习之旅!

在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值