只关注项目代码的同学可以直接跳转目录中的正文部分,查看项目仓库和功能介绍。
引言
Chatbot的UI界面设计,是和传统软件不同的:都是当面一个简洁的对话框,框里预备着热乎的工具,可以随时更新。

像我这样做工的牛马,午休傍晚下了班,每每花几个token,问一两句弱智吧的问题,——这是一年多前的事,现在一个问题都得设计个COT,——不用登录,在主页改改prompt,测完了就发群里刷一下存在感。
倘肯多费点心思,便可以问问3.11和3.9谁大,或者让姥姥念CD-Key哄你睡,姑且当作谈资了。如果充点真金白金,那就能获得一个API-Key,但我们这些牛马,多是白嫖党,大抵没有这样阔绰。只有公司报销的领域专家,才能点进绑定支付方式的页面里,买这买那的,写个脚本直接调用API慢慢跑着测。

我从毕业起,就在IT通信行业当伙计,父母和掌柜都说,不是e人,怕侍候不了VIP客户,就在组里开发开发后端。
公司内的stackholder,虽然容易说话,但是唠唠叨叨缠夹不清的也很不少。他们往往要亲眼看着代码跑起来,看过消息交互的抓包格式对了没有,又亲看将服务器整到shutdown,还能定时恢复,然后放心:在这严重监督之下,出一点小问题也很为难。
所以过了几天,掌柜说这些活太简单了,让去看看AI。幸亏大学里有点底子,也算对口,便改为既要开发后端,又要设计前端,还要兼顾AI算法和应用场景的奇怪职务了。

我从此便每天挂在Github上,看看有什么可以拿来用的App做个Demo。虽然没什么失职,但是总觉有些单调。
有些App太臃肿,npm install跑完就带上了全家;
有些太简单,没法适配微信群里一天更新三回的模型和后端框架。
只有最后狠下心来自己悄悄写一个,取个名就叫Chat-UI,算是勉强满意,所以来说说。
https://github.com/AI-QL/chat-ui
https://github.com/AI-QL/chat-ui
Chat-UI是不需要npm install和run time就能运行的,只需唯一的html单文件。
它身材很小巧;蓝白配色,底部夹杂着一些mdi图标;只有简单的light主题。
用的虽然是VUE,可是只用CDN引入了JS库,简单快捷,而且都是latest版本,似乎不用更新,也不用安装。
<script src="https://cdn.jsdelivr.org/npm/vue/dist/vue.global.prod.min.js"></script>
<script src="https://cdn.jsdelivr.org/npm/vuetify/dist/vuetify.js"></script>
<link href="https://cdn.jsdelivr.org/npm/vuetify/dist/vuetify.css" rel="stylesheet">
LLM对人说话,总是满口markdown,教人半懂不懂的。又因为我自己前端开发经验不过关,便直接引入了md-editor-v3,替我可视化markdown。

fetch回来的JSON body刚收到,所有的组件就都看着它笑,有的叫道,
“OpenAI,你又增加新的限制区域了!”它不回答,只是吐出一行,“Fail to fetch XXX”便不再多言。
他们又故意的高声嚷道,“Nidia NIM 都免费提供 Llama 405B 了!”

OpenAI睁大眼睛说,“哪有什么免费的…”
“就是免费的,只要注册时候额外申请一下免费token就行了,随便用。”
OpenAI便涨红了脸,额上的青筋条条绽出,争辩道,“那也是有数量上限的,而且不支持跨域,跨域你懂吗?”接连便是难懂的话,什么“CORS”, 什么“Allow Headers”之类,
引得众后端都哄笑起来:那我再开发一个Proxy不就搞定了吗,workflow内充满了开源的空气。
听人家背地里谈论,OpenAI原来也免费送过5刀的token,但没有境外手机号,又不会绑境外信用卡;于是愈用愈少,弄到将要过期了。幸而开源vllm跑得一手好模型,便换一个模型当后端用用。
可惜OpenAI又传染的一样坏脾气,就是API版本控制。坐不到几天,便连JSON和定义,一齐更新了。如是几次,没有办法,便免不了再开发一个API UI,偶然查看一下最新格式。
https://api-ui.aiql.com/ 第一次登陆比较慢,可以下载html修改CDN
https://api-ui.aiql.com/
但是OpenAI在我们这里,品行比别家都好,格式支持的最全,报错最详细;虽然间或没有在文档里更新,暂时记在Issue里,但不出一月,定然修复,从Issue里done掉了名字。
OpenAI融了几回资,涨红的股价渐渐走了高,旁人便又问道,“OpenAI,AGI当真有出路么”,OpenAI看着问他的人,显出不屑置辩的神气。
他们便接着说道,“你怎的连半个开源的模型也没有呢?”OpenAI立刻显出颓唐不安模样,脸上笼上了一层灰色,嘴里说些话;这回可是全是金鍂鑫𨰻之类,一下全懂了。在这时候,众人也都哄笑起来:workflow内充满了闭源的空气。
在这些时候,我可以附和着challenge,掌柜是决不责备的。而且掌柜见了那些用OpenAI模型的项目,也每每这样发难,引人发笑。
OpenAI自己知道不能开源,便只好向各方面发力。有一回对我发邮件,“你知道多模态和Function call么?”
我略略点一点头。
他说,“用过,……我便要考你一考。request里的messages,怎样写的?”
我想,API文档里都写着的,也配考我么? 便回过脸去,不再理会。
OpenAI等了许久,很恳切的说道,“不会用吧?……我教给你,记着!这些format应该记着。将来做掌柜的时候,装逼要用。”
我暗想我和掌柜的等级还很远呢,而且我们掌柜也从不看开发细节;又好笑,又不耐烦,懒懒的答他道,
“谁要你教,不就是content里面一个string么?”OpenAI显出极高兴的样子,将一个长长的schema敲着我的脑袋,点头说,“对呀对呀!……messages光是role就有六样写法,你知道么?”我愈不耐烦了,努着嘴走远。
OpenAI刚写了个oneOf,想在后面跟上[developer, system, user, assistent, tool, function],见我毫不热心,便又叹一口气,显出极惋惜的样子, 把function标为了deprecated,然后又把user和tool定义了不一样的content parts。

(user, assistent, tool 里面的支持格式其实不一样哟)
有几回,隔壁开发组见得着KPI,也赶热闹,围住了OpenAI。它便给他们模型吃,一周一更新。开发组从年初加班到年尾,仍然不散,眼睛都望着array里不断新增的 [o1, o1-2024-12-17, o1-preview, o1-preview-2024-09-12, o1-mini, o1-mini-2024-09-12, gpt-4o, gpt-4o-2024-11-20, gpt-4o-2024-08-06, gpt-4o-2024-05-13, gpt-4o-audio-preview, gpt-4o-audio-preview-2024-10-01, gpt-4o-audio-preview-2024-12-17, gpt-4o-mini-audio-preview, gpt-4o-mini-audio-preview-2024-12-17, chatgpt-4o-latest, gpt-4o-mini, gpt-4o-mini-2024-07-18, gpt-4-turbo, gpt-4-turbo-2024-04-09, gpt-4-0125-preview, gpt-4-turbo-preview, gpt-4-1106-preview, gpt-4-vision-preview, gpt-4, gpt-4-0314, gpt-4-0613, gpt-4-32k, gpt-4-32k-0314, gpt-4-32k-0613, gpt-3.5-turbo, gpt-3.5-turbo-16k, gpt-3.5-turbo-0301, gpt-3.5-turbo-0613, gpt-3.5-turbo-1106, gpt-3.5-turbo-0125, gpt-3.5-turbo-16k-0613]。
OpenAI着了慌,伸开五指将文档罩住,弯腰下去说道,“不多了,我已经不多了。”直起身又看一看股价,自己摇头说,“不多不多!多乎哉?不多也。”于是这一群Prompt Engineer都在哭声里走散了。
OpenAI是这样的使人快活,可是没有他,别人也便这么过。vllm,TGI,部署个小模型当后端也不是不能用。
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inferencehttps://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm
谁曾想TGI基于conda,而这玩意license不能给大组织商用:

我知道AI多半是个杀猪盘,但是没曾想,屠夫和刀子都没动手,甚至猪还没哼哼,砧板第一个跳起来给了我一巴掌:
Anaconda 许可变更解读
https://www.datacamp.com/blog/navigating-anaconda-licensing
有一天,大约是2024年圣诞前的两三天,掌柜正在慢慢的定OKR,取下粉板,忽然说,“OpenAI长久没有新东西了。”我才也觉得它的确长久没啥新闻了。
一个带着黑眼圈的人说道,“它怎么没更新? ……他o1-pro了。”
掌柜说,“哦!”
“它总仍旧是更新。这一回,是自己卷,竟连更12天。它家的新东西,200刀一个月,还只能Web访问,用得起么?”
“后来怎么样?”“怎么样?先充钱,后来是封号,信用卡记录被老婆看到了,再打折了腿。”
“后来呢?”“后来打折了腿了。”
“打折了怎样呢?”“怎样?……谁晓得?许是换用Llama了。”掌柜也不再问,仍然慢慢的算他的帐。

圣诞过后,东北风是一天凉比一天,看看将近元旦;
我整天的靠着AI的火,也须换开源模型了。
clone了一整天的模型,没有一个能用的,我正合了眼坐着。忽然间听得一个声音,“试试这MOE吧。”
这声音虽然极低,却很耳熟。看时又全没有人。站起来向外一望,竟是Deepseek在微信群里悄悄发着自己的照片:
它脸上全是benchmark,已经看不出原本的样子;穿一件自研的大衣,盘着两腿,下面垫一个MOE,用草绳在肩上挂住;见了我,又说道,“试一试MOE吧。”
掌柜也伸出头去,一面说,“新的开源模型么?训练成本才557.6万美元呢!”
Deepseek很疲惫的仰面答道,“这,v3不算新模型了……已经超过Llama 405B了。也赶上GPT-4o了,性能算好的了。”
掌柜仍然同平常一样,笑着对我说,“你看,又多了一个连部署都部署不起的模型”。但Deepseek这回却不十分分辩,单说了一句“我在Huggingface上开源了!”
“开源? 那要不我们试试?支持Function call吗” Deepseek低声说道,“支持,支,早就支持了……”他的眼色,很像恳求我,不要再细问(问就是官方文档更新慢)。
此时已经聚集了几个开发,便去查看文档了。我重新配置了Chat-UI,清空对话记录,重置了MCP server。他从新人注册里面摸出了一个月的免费token,放在我手里,见他满手都是卡,也不知是哪个哥布林洞穴里来的,想必模型便是用这2000张卡炼出来。不一会,我们调通了代码,他便又在旁人的说笑声中,去下一个交流群里了。
自此以后,就没有再看其他模型了。到了年底,掌柜取下粉板说,“还有Llama 3.3呢!”到了第二天的中午,又说,“Mistral最近有更新么?”到第三天又问,“Qwen是不是也在推新模型”,于是我狠狠心,把这些都用vllm测了一遍。
我到现在终于差不多可以确定Chat-UI大概可以拿出来给大家用一用了。
正文
其实要把一个项目说清楚,一篇短文或者回答是不够的。
然而我这人又不善言辞,只好自欺欺人:“一个纯粹的前端项目,不需要用复杂的介绍来丰富的,交互逻辑清晰,满足基本功能需求,就可以了。“
所以这里只是估摸着说一下基本的功能,具体的代码解读,等有时间再做吧。
配置
我开发部署后端的时候,经常头疼没有一个前端可以用,主要是后端的URL和model名称一直在变,有时候又需要给别人展示,直接curl太粗暴了,所以Chat-UI里可以随意配置URL,还可以通过Json文件快速导入写好的配置:

Prompts

支持插入多个prompts,会在messages里面帮你合并一起放到system role对应的text content里。这样可以测试不同提示词以及顺序对模型的影响。暂时用不上的,但是已经写好的prompt,可以放到backup里,随时拖拽交换对比。
MD格式支持
可以支持Markdown语法显示,比如Mermaid图和代码块:


同时也可以一键复制文本,或者显示原始文本。
历史记录

记录聊天历史,可以点击载入,或者下载并保存为Json文件,也可以单独或批量删除。
多模态

可以支持图片多模态,记得选择后端模型的时候要选择vision模型,比如Llama vision或者Pixtral。
i18n

提供基本的多语言支持,选了5种特殊字符比较多的语言,有需要的同学可以自己加
MCP
可以作为渲染端对接 MCP(Model Context Protocol)Servers,具体参考另一个项目:
[MCP(Model Context Protocol)模型上下文协议 实战篇1_mcp协议内容-优快云博客文章浏览阅读2.6k次,点赞70次,收藏10次。MCP 协议(Model Context Protocol)模型上下文协议,简单实战,快速开发一个AI Agent APP_mcp协议内容
这样可以扩展更多agent功能以及function call
Response兼容
对于一些正常OpenAI SDK兼容的后端都可以支持。对于一些特殊后端,比如Cloudflare的 Workers AI (如下这种Rest API定义):
{
"result": {
"response": "Hello, World first appeared in 1974 at Bell Labs when Brian Kernighan included it in the C programming language example. It became widely used as a basic test program due to simplicity and clarity. It represents an inviting greeting from a program to the world."
},
"success": true,
"errors": [],
"messages": []
}
或者python写的直接plain text返回的response,也都可以兼容(是的,真的有这样的后端,除非自己写一个不然真的找不到能支持这种离谱格式的玩意)。
也可以勾选支持流式输出(stream)。
Cloudflare Pages
项目比较简单,直接fork之后可以部署在自己的域名下,如果不熟悉Cloudflare pages请查看链接:
https://developers.cloudflare.com/pageshttps://developers.cloudflare.com/pages
Docker
也提供直接Docker部署的镜像:
既然有了镜像,所以默认可以支持其他容器化部署,比如K8s,或者在Huggingface上直接一行代码搞定:
From aiql/chat-ui
https://huggingface.co/spaces/AI-QL/chat-ui
https://huggingface.co/spaces/AI-QL/chat-ui
这里也提供一个例子。
HTML
最后,也是最推荐的用法,可以直接在Github上下载 index.html,双击打开即可,不用安装也不用run。
零基础如何高效学习大模型?
为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和MoPaaS魔泊云联合梳理打造了系统大模型学习脉络,这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️

【大模型全套视频教程】
教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。
从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。
同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!

深耕 AI 领域技术专家带你快速入门大模型
跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!

【精选AI大模型权威PDF书籍/教程】
精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。

【AI 大模型面试题 】
除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。
【大厂 AI 岗位面经分享(92份)】

【AI 大模型面试真题(102 道)】

【LLMs 面试真题(97 道)】

【640套 AI 大模型行业研究报告】

【AI大模型完整版学习路线图(2025版)】
明确学习方向,2025年 AI 要学什么,这一张图就够了!

👇👇点击下方卡片链接免费领取全部内容👇👇

抓住AI浪潮,重塑职业未来!
科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。
行业趋势洞察:
- 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
- 人才争夺战: 拥有3-5年经验、扎实AI技术功底和真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
- 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。
与其观望,不如行动!
面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。

01 为什么分享这份学习资料?
当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。
因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!
我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。
*02 这份资料的价值在哪里?*
专业背书,系统构建:
-
本资料由我与MoPaaS魔泊云的鲁为民博士共同整理。鲁博士拥有清华大学学士和美国加州理工学院博士学位,在人工智能领域造诣深厚:
-
- 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇。
- 拥有多项中美发明专利。
- 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
-
目前,我有幸与鲁博士共同进行人工智能相关研究。

内容实用,循序渐进:
-
资料体系化覆盖了从基础概念入门到核心技术进阶的知识点。
-
包含丰富的视频教程与实战项目案例,强调动手实践能力。
-
无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考,助力你提升技术能力,向大模型相关岗位转型发展。



抓住机遇,开启你的AI学习之旅!

876

被折叠的 条评论
为什么被折叠?



