基于颜色直方图的图像检索(实验分析)

基于颜色直方图的图像检索

  1. 概述

在过去的十几年间,有许多知名机构都对图像检索系统进行了深入的研究,病开发出了相应的检索系统,例如IBM Almaden研究中心研制的QBIC系统,Virage公司研发的VIRAGE系统,麻省理工大学多媒体实验室研发的Photobook系统,哥伦比亚大学研发的VisualSeek系统,斯坦福大学研发的WBIIS系统,U.C.伯克利分校研发的Blobworld系统等等。

这些检索系统的基本特征都是基于图像像素值的特征提取相应的规则图像,例如形状、颜色、纹理等,并以此为依据对图像进行比较检索,在这篇论文中,系统采用了基于颜色特征提取的检索。基于直方图在两个颜色空间对图像特征进行判定检索。这两个颜色空间是RGB和HSV。通过对两副图像对应的RGB和HSV值计算其距离,依据距离的远近来判断相似性,这种方法简单易行,由于丢弃了图像的形状、颜色、纹理等信息,判定的计算量相对较小。当然这也导致了两副图像之间的判定没有实际的语义上的关联,也就是说,距离相近的图像并不一定有事实上的相应联系。但是,经过试验的判定,这种基于直方图的图像检索系统能够为图片检索提供相对精确的检索结果。

  1. 相关知识
    1. RGB颜色空间

RGB颜色模型中每种颜色都是由红绿蓝三种颜色组成。这种颜色模型在许多CRT显示器和彩色光栅图形设备被广泛使用。这三种颜色被认为是其他颜色的添加剂,对于所需要的颜色通过对这三种颜色进行不同的比例进行相加即可得到。RGB模型可以用如下的颜色坐标系表示。注意从(000)到(111)的对角线,白色代表了灰阶,RGB色彩模式俯视从白色开始的。

    1. HSV颜色空间(也称HIS颜色空间)

HSV字母分别代表了色度(Hue),饱和度(Saturation),色调。上面的锥形图说明HSV的颜色模型。Value代表了颜色的强度,他是从图像信息中分离出来,可以表示相关信息的部分。色度和饱和度代表了颜色在人眼中的生理特征。色度与红色等颜色从01

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值