hdu4549(费马小定理 + 快速幂)

本文介绍了一种使用矩阵快速幂的方法来高效计算斐波那契数列的问题,尤其针对大数值的情况。通过矩阵运算,避免了传统递归方式的效率瓶颈,并结合快速幂操作实现优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

M斐波那契数列F[n]是一种整数数列,它的定义如下:

F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )

现在给出a, b, n,你能求出F[n]的值吗?
 

Input
输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
 

Output
对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
 

Sample Input
0 1 0 6 10 2
 

Sample Output
0 60

把F往后递推可以看出是  f(n)=a^fib(n-1)*b^fib(n),n>=2,然后发现正常推fib并不行,超时(表示并不会用矩阵求)

这题主要是求出fib数列,然后再进行快速幂即可。

费马小定理:如果p为质数且a,p互质      a^(p-1) = 1(mod  p)

所以 a^n = a^(  n%(p-1) ) * 1 * 1........     (最开始一直不理解费马是怎么转换过来的)


通俗点:

A^B %C   这题的C是质素,而且A,C是互质的。
所以直接A^(B%(C-1)) %C     (来自kuangbin大神)

用矩阵快速幂求出fib数列基本就搞定 (矩阵部分不会写,果然太菜,啥都不会- -)


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 10100
typedef long long ll;
using namespace std;
int n,m;
unsigned long long a[N],ins[70];
bool flag;
struct Matrix
{
    ll p[2][2];
};


Matrix mul(Matrix a, Matrix b) //矩阵相乘
{
    Matrix res;
    for(int i = 0; i < 2; i++)
        for(int j = 0; j < 2; j++)
        {
            res.p[i][j] = 0;
            for(int k = 0; k < 2; k++)
            {
                res.p[i][j] += a.p[i][k] * b.p[k][j];
                res.p[i][j] %= 1000000006;
            }
        }
    return res;
}

Matrix pow_matrix(Matrix a, ll n)  //矩阵快速幂
{
    Matrix res;
    res.p[0][0] = res.p[1][1] = 1;
    res.p[0][1] = res.p[1][0] = 0;
    while(n != 0)
    {
        if(n & 1)
            res = mul(res, a);
        a = mul(a, a);
        n >>= 1;
    }
    return res;
}
ll pow_mod(ll a, ll n) //二分快速幂
{
    if(n == 0) return 1;
    ll x =pow_mod(a,n/2);
    ll ans = x*x%1000000007;
    if(n % 2) ans = ans*a%1000000007;
    return ans;
}

int main()
{
    int a,b,n;
    Matrix tmp;
    tmp.p[0][0] = 0;
    tmp.p[0][1] = tmp.p[1][1] = tmp.p[1][0] = 1;
    while(scanf("%d%d%d",&a,&b,&n)!=EOF)
    {
        Matrix q = pow_matrix(tmp,n);
        ll ans = 1;
        ans = (pow_mod(a, q.p[0][0]) * pow_mod(b, q.p[1][0])) % 1000000007;
        printf("%I64d\n",ans);
    }
    return 0;
}









### HDU OJ 排列组合问题解法 排列组合问题是算法竞赛中的常见题型之一,涉及数学基础以及高效的实现技巧。以下是关于如何解决此类问题的一些通用方法和具体实例。 #### 数学基础知识 在处理排列组合问题时,需要熟悉以下几个基本概念: - **阶乘计算**:用于求解全排列的数量 $ n! = n \times (n-1) \times ... \times 1 $[^4]。 - **组合数公式**:$ C(n, k) = \frac{n!}{k!(n-k)!} $ 表示从 $ n $ 中选取 $ k $ 的方案数[^5]。 - **快速幂运算**:当涉及到模运算时,可以利用费马小定理优化逆元的计算[^6]。 #### 题目推荐与分析 以下是一些典型的 HDU OJ 上的排列组合题目及其可能的解法: ##### 1. 基础排列组合计数 - **HDU 2039 近似数** - 描述:给定两个整数 $ a $ 和 $ b $,统计区间内的近似数数量。 - 方法:通过枚举每一位上的可能性来构建合法数字并计数[^7]。 ```cpp #include <iostream> using namespace std; long long comb(int n, int r){ if(r > n || r < 0)return 0; long long res=1; for(int i=1;i<=r;i++)res=res*(n-i+1)/i; return res; } int main(){ int t,n,k; cin>>t; while(t--){ cin>>n>>k; cout<<comb(n+k-1,k)<<endl; // 组合数应用 } } ``` ##### 2. 动态规划的应用 - **HDU 1028 Ignatius and the Princess III** - 描述:给出正整数 $ m $ 和 $ n $,问有多少种方式把 $ m $ 分成最多 $ n $ 份。 - 方法:定义状态转移方程 $ dp[i][j]=dp[i-1][j]+dp[i][j-i] $ 来表示当前总和为 $ j $ 并分成至多 $ i $ 份的情况数目[^8]。 ```cpp #include<bits/stdc++.h> using namespace std; const int MAXN=1e3+5; long long c[MAXN][MAXN]; void init(){ memset(c,0,sizeof(c)); c[0][0]=1; for(int i=1;i<MAXN;i++){ c[i][0]=c[i][i]=1; for(int j=1;j<i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%(1e9+7); } } int main(){ init(); int T,m,n; scanf("%d",&T); while(T--){ scanf("%d%d",&m,&n); printf("%lld\n",c[m+n-1][min(m,n)]); } } ``` #### 总结 针对不同类型的排列组合问题,可以选择合适的工具和技术加以应对。无论是简单的直接计算还是复杂的动态规划模型,都需要扎实的基础知识作为支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值