codeforces 1327E - Count The Blocks(组合数学,贡献法)

探讨了如何使用滑窗法解决一个数学问题,即在所有n位数字中找到长度为1到n的连续相同数字段的数量。文章详细解释了解题思路,并提供了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意:

我们生成包含n位数字的从000...000->999...999的所有数字(注意数字保留n位所以有前置0)

假设连续的相同数字我们认为是1段,1段里面有可能的长度为0到n。现在问我们,在这10^n -1 个数字当中,长度为1到n的段分别有多少个。

n<=1e5.

解题思路:

很明显,n<=1e5。所以我们考虑枚举n种长度来讨论这个问题。假如我们用一个滑窗的思想去考虑,一个段我们把它想为一个滑窗,然后我们把滑窗在不同位置带来的答案贡献加上去就可以了。

总共有两种滑窗情况:

(1)

第一种是滑窗(长度为len)恰好在边界的,那么我们认为它对答案的贡献为:

2 * 10 * 9 * (10^(n-len-1)) 其中2代表滑窗可以在头或者滑窗可以在尾。10代表滑窗里面的数字可以是0-9. 9代表不同于滑窗数字的种类数。剩下的数字我们可以随意放,所以有 (10^(n-len-1))种。

第二种是滑窗不在边界处。那么我们认为它对答案的贡献为:

(n-len-1)*10 * 9 * 9 * (10^(n-len-2))

特殊的len=n时,我们需要加上10.

可能大家有一个疑问,在这里会不会导致重复数的情况。其实不会的。00100,其中对答案的贡献是+2. 所以我们不需要担心前面置为00,后面就不能再置为00了。

这里我们再次看到了这种每个情况对答案贡献的思想。另外记得滑窗总数是n-len+1.

#include <bits/stdc++.h>
#define int long long 
using namespace std;
const int MODN = 998244353 ;
int quick_pow(int a,int b){
    int ret=1;
    while(b){
        if(b&1)ret*=a;
        ret%=MODN;
        b>>=1;
        a*=a;
        a%=MODN;
    }
    return ret;
}
int32_t main(){
    int n;cin>>n;
    int sum=0;
    for(int i=1;i<=n;i++){
        if(i==n)sum=10;
        else{
            sum=0;
            if(n-i-1>=0)
            sum=sum+2*10*9*quick_pow(10,n-i-1)%MODN;
            sum%=MODN;
            if(n-i-2>=0)
            sum=sum+(n-i-1)*10*9*9*quick_pow(10,n-i-2);
            sum%=MODN;
        }
        cout<<sum<<" ";
    }
    cout<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值