对于非结构化的数据存储系统来说,LIST 操作通常都是非常重量级的,不仅占用大量的 磁盘 IO、网络带宽和 CPU,而且会影响同时间段的其他请求(尤其是响应延迟要求极高的 选主请求),是集群稳定性的一大杀手。
例如,对于 Ceph 对象存储来说,每个 LIST bucket 请求都需要去多个磁盘中捞出这个 bucket 的全部数据;不仅自身很慢,还影响了同一时间段内的其他普通读写请求,因为 IO 是共享的,导致响应延迟上升乃至超时。如果 bucket 内的对象非常多(例如用作 harbor/docker-registry 的存储后端),LIST 操作甚至都无法在常规时间内完成( 因而依赖 LIST bucket 操作的 registry GC 也就跑不起来)。
又如 KV 存储 etcd。相比于 Ceph,一个实际 etcd 集群存储的数据量可能很小(几个 ~ 几十个 GB),甚至足够缓存到内存中。但与 Ceph 不同的是,它的并发请求数量可能会高 几个量级,比如它是一个 ~4000 nodes 的 k8s 集群的 etcd。单个 LIST 请求可能只需要 返回几十 MB 到上 GB 的流量,但并发请求一多,etcd 显然也扛不住,所以最好在前面有 一层缓存,这就是 apiserver 的功能(之一)。K8s 的 LIST 请求大部分都应该被 apiserver 挡住,从它的本地缓存提供服务,但如果使用不当,就会跳过缓存直接到达 etcd,有很大的稳定性风险。
本文深入研究 k8s apiserver/etcd 的 LIST 操作处理逻辑和性能瓶颈,并提供一些基础服务的 LIST 压力测试、 部署和调优建议,提升大规模 K8s 集群的稳定性。
kube-apiserver LIST 请求处理逻辑:
代码基于 v1.24.0,不过 1.19~1.24 的基本逻辑和代码路径是一样的,有需要可对照参考。
引 言
1.1 K8s 架构:环形层次视图
从架构层次和组件依赖角度,可以将一个 K8s 集群和一台 Linux 主机做如下类比:
Fig 1. Anology: a Linux host and a Kubernetes cluster
对于 K8s 集群,从内到外的几个组件和功能:
- etcd:持久化 KV 存储,集群资源(pods/services/networkpolicies/…)的唯一的权威数据(状态)源;
- apiserver:从 etcd 读取(ListWatch)全量数据,并缓存在内存中;无状态服务,可水平扩展;
- 各种基础服务(e.g. kubelet、*-agent、*-operator):连接 apiserver,获取(List/ListWatch)各自需要的数据;
- 集群内的 workloads:在 1 和 2 正常的情况下由 3 来创建、管理和 reconcile,例如 kubelet 创建 pod、cilium 配置网络和安全策略。
1.2 apiserver/etcd 角色
以上可以看到,系统路径中存在两级 List/ListWatch(但数据是同一份):
- apiserver List/ListWatch etcd
- 基础服务 List/ListWatch apiserver
因此,从最简形式上来说,apiserver 就是挡在 etcd 前面的一个代理(proxy):
+--------+ +---------------+ +------------+
| Client | -----------> | Proxy (cache) | --------------> | Data store |
+--------+ +---------------+ +------------+
infra services apiserver etcd
- 绝大部分情况下,apiserver 直接从本地缓存提供服务(因为它缓存了集群全量数据);
- 某些特殊情况,例如:
- 客户端明确要求从 etcd 读数据(追求最高的数据准确性),
- apiserver 本地缓存还没建好
apiserver 就只能将请求转发给 etcd —— 这里就要特别注意了 —— 客户端 LIST 参数设置不当也可能会走到这个逻辑。
1.3 apiserver/etcd List 开销
1.3.1 请求举例
考虑下面几个 LIST 操作:
LIST apis/cilium.io/v2/ciliumendpoints?limit=500&resourceVersion=0
这里同时传了两个参数,但 resourceVersion=0 会导致 apiserver 忽略 limit=500, 所以客户端拿到的是全量 ciliumendpoints 数据。
一种资源的全量数据可能是比较大的,需要考虑清楚是否真的需要全量数据。后文会介绍定量测量与分析方法。
LIST api/v1/pods?filedSelector=spec.nodeName%3Dnode1
这个请求是获取 node1 上的所有 pods(%3D 是 = 的转义)。
根据 nodename 做过滤,给人的感觉可能是数据量不太大,但其实背后要比看上去复杂:
这种行为是要避免的,除非对数据准确性有极高要求,特意要绕过 apiserver 缓存。
- 首先,这里没有指定 resourceVersion=0,导致 apiserver 跳过缓存,直接去 etcd 读数据;
- 其次,etcd 只是 KV 存储,没有按 label/field 过滤功能(只处理 limit/continue),
- 所以,apiserver 是从 etcd 拉全量数据,然后在内存做过滤,开销也是很大的,后文有代码分析。
LIST api/v1/pods?filedSelector=spec.nodeName%3Dnode1&resourceVersion=0
跟 2 的区别是加上了 resourceVersion=0,因此 apiserver 会从缓存读数据,性能会有量级的提升。
但要注意,虽然实际上返回给客户端的可能只有几百 KB 到上百 MB(取决于 node 上 pod 的数量、pod 上 label 的多少等因素), 但 apiserver 需要处理的数据量可能是几个 GB。后面会有定量分析。
以上可以看到,不同的 LIST 操作产生的影响是不一样的,而客户端看到数据还有可能只 是 apiserver/etcd 处理数据的很小一部分。如果基础服务大规模启动或重启, 就极有可能把控制平面打爆。
1.3.2 处理开销
List 请求可以分为两种:
- List 全量数据:开销主要花在数据传输;
- 指定用 label 或字段(field)过滤,只需要匹配的数据。
这里需要特别说明的是第二种情况,也就是 list 请求带了过滤条件。
- 大部分情况下,apiserver 会用自己的缓存做过滤,这个很快,因此耗时主要花在数据传输;
- 需要将请求转给 etcd 的情况, 前面已经提到,etcd 只是 KV 存储,并不理解 label/field 信息,因此它无法处理过滤请求。实际的过程是:apiserver 从 etcd 拉全量数据,然后在内存做过滤,再返回给客户端。因此除了数据传输开销(网络带宽),这种情况下还会占用大量 apiserver CPU 和内存。
1.4 大规模部署时潜在的问题
再来看个例子,下面这行代码用 k8s client-go 根据 nodename 过滤 pod,
podList, err := Client().CoreV1().Pods("").List(ctx(), ListOptions{FieldSelector: "spec.nodeName=node1"})
看起来非常简单的操作,我们来实际看一下它背后的数据量。以一个 4000 node,10w pod 的集群为例,全量 pod 数据量:
- etcd 中:紧凑的非结构化 KV 存储,在 1GB 量级;
- apiserver 缓存中:已经是结构化的 golang objects,在 2GB 量级( TODO:需进一步确认);
- apiserver 返回:client 一般选择默认的 json 格式接收, 也已经是结构化数据。全量 pod 的 json 也在 2GB 量级。
可以看到,某些请求看起来很简单,只是客户端一行代码的事情,但背后的数据量是惊人的。指定按 nodeName 过滤 pod 可能只返回了 500KB 数据,但 apiserver 却需要过滤 2GB 数据 —— 最坏的情况,etcd 也要跟着处理 1GB 数据 (以上参数配置确实命中了最坏情况,见下文代码分析)。
集群规模比较小的时候,这个问题可能看不出来(etcd 在 LIST 响应延迟超过某个阈值 后才开始打印 warning 日志);规模大了之后,如果这样的请求比较多,apiserver/etcd 肯定是扛不住的。
1.5 本文目的
通过深入代码查看 k8s 的 List/ListWatch 实现,加深对性能问题的理解,对大规模 K8s 集群的稳定性优化提供一些参考。
apiserver List( ) 操作源码分析
有了以上理论预热,接下来可以看代码实现了。
2.1 调用栈和流程图
store.List
|-store.ListPredicate
|-if opt == nil
| opt = ListOptions{ResourceVersion: ""}
|-Init SelectionPredicate.Limit/Continue fileld
|-list := e.NewListFunc() // objects will be stored in this list
|-storageOpts := storage.ListOptions{opt.ResourceVersion, opt.ResourceVersionMatch, Predicate: p}
|
|-if MatchesSingle ok // 1. when "metadata.name" is specified, get single obj
| // Get single obj from cache or etcd
|
|-return e.Storage.List(KeyRootFunc(ctx), storageOpts) // 2. get all objs and perform filtering
|-cacher.List()
| // case 1: list all from etcd and filter in apiserver
|-if shouldDelegateList(opts) // true if resourceVersion == ""
| return c.storage.List // list from etcd
| |- fromRV *int64 = nil
| |- if len(storageOpts.ResourceVers