可以用CEC13BenchMark来测试自己的算法。
20个具有不同特征的基准测试函数(包括几个相同但尺寸大小不同的函数)来评估小生境算法
函数
- F1:F_1:F1:Five-Uneven-Peak Trap (1D)
- F2:F_2:F2:Equal Maxima (1D)
- F3:F_3:F3:Uneven Decreasing Maxima (1D)
- F4:F_4:F4:Himmelblau (2D)
- F5:F_5:F5:Six-Hump Camel Back (2D)
- F6:F_6:F6:Shubert (2D,3D)
- F7:F_7:F7:Vincent (2D,3D)
- F8:F_8:F8:Modified rastrigin - All Global Optima (2D)
- F9:F_9:F9:Composition Function 1 (2D)
- F10:F_{10}:F10:Composition Function 2 (2D)
- F11:F_{11}:F11:Composition Function 3 (2D,3d,5D,10D)
- F12:F_{12}:F12:Composition Function 4 (3D,5d,10D,20D)
公式
-
F1:F_1:F1:Five-Uneven-Peak Trap (1D)
-
Fi={ 80(2.5−x)for0⩽x<2.564(x−2.5)for2.5⩽x<5.064(7.5−x)for5.0⩽x<7.528(x−7.5)for7.5⩽x<12.528(17.5−x)for12.5⩽x<17.532(x−17.5)for17.5⩽x<22.532(27.5−x)for22.5⩽x<27.580(x−27.5)for27.5⩽x<30 F_i = \begin{cases} 80(2.5-x) & for 0\leqslant x <2.5\\ 64(x-2.5) & for 2.5\leqslant x <5.0\\ 64(7.5-x) & for 5.0\leqslant x <7.5\\ 28(x-7.5) & for 7.5\leqslant x <12.5\\ 28(17.5-x) & for 12.5\leqslant x <17.5\\ 32(x-17.5) & for 17.5\leqslant x <22.5\\ 32(27.5-x) & for 22.5\leqslant x <27.5\\ 80(x-27.5) & for 27.5\leqslant x <30\\ \end{cases} Fi=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧80(2.5−x)64(x−2.5)64(7.5−x)28(x−7.5)28(17.5−x)32(x−17.5)32(27.5−x)80(x−27.5)for0⩽x<2.5for2.5⩽x<5.0for5.0⩽x<7.5for7.5⩽x<12.5for12.5⩽x<17.5for17.5⩽x<22.5for22.5⩽x<27.5for27.5⩽x<30
-
xϵ[0,30]x\epsilon[0,30]xϵ[0,30]
-
-
F2:F_2:F2:Equal Maxima (1D)
-
F2(x)=sin6(5πx) F_2(x)=\sin^6(5\pi x) F2(x)=sin6(5πx)
-
xϵ[0,1]x\epsilon[0,1]xϵ[0,1]
-
-
F3:F_3:F3:Uneven Decreasing Maxima (1D)
-
F3(x)=exp(−2log(2)(x−0.080.854)2)sin6(5π(x3/4−0.05)) F_3(x)=\exp(-2\log(2)(\frac{x-0.08}{0.854})^2) \sin^6(5\pi (x^{3/4}-0.05)) F3(x)=exp(−2log(2)(0.854x−0.08)2)sin6(5π(x3/4−0.05))
-
xϵ[0,1]x\epsilon[0,1]xϵ[0,1]
-
-
F4:F_4:F4:Himmelblau (2D)
-
F4(x,y)=200−(x2+y−11)2−(x+y2−7)2 F_4(x,y)=200-(x^2+y-11)^2-(x+y^2-7)^2 F4(x,y)=200−(x2+y−11
-

本文介绍CEC13Benchmark中20个不同特征的基准测试函数,涵盖一维到多维复杂函数,如Five-Uneven-PeakTrap、EqualMaxima、Himmelblau等,提供算法评估的小生境场景。详细解析了每个函数的数学表达式及变量范围,适合用于测试和优化小生境算法。
最低0.47元/天 解锁文章
541





