其实还蛮早就听过kd-tree的,但是对其中的原理一直是一知半解,之前听Ng讲ML的时候,说要对kd-tree,O(),等一些基本概念要有所了解,当时也没有人带,不知道具体的学习一些机器学习包括深度学习的一些流程,上来就是卷积神经网络等等,理解不算深刻,到现在才稍稍有点明白其中一些关系。
何为kd-tree?都是外国人发明的简称,全名是k dimensional search tree,说白了,就是一个维度为k的二叉树。在算法导论的二叉树那章可以看看,具体就明白了,kd-tree 也是就一种数据结构,因为LZ主要是处理三维视觉方面的问题,所以接触的都是三维的空间点云,所以建立的kd-tree都是三维的,也就不拓展到n维了,或许后面可以加上时间流,变成四维的,也就是处理点云视频?
怎么构建树呢?在树的根部,所有的孩子都将根据第一维度(维度选择是不一定的,这里以第一维度为例)进行分割(即,如果第一维坐标小于根,它将在左子树中,如果大于根,则显然会在 右子树)。 树中的每个级别在下一维度上划分,一旦所有其他人都已用完,则返回到第一个维度。 构建k-d树最有效的方法是使用像“快速排序”一样使用的分区方法,将中点放在根部,而一切的值都小于左边的一维值,而右边的值越大。 然后,可以在左右子树上重复此过程,直到您要分区的最后一个树只由一个元素组成。
#include <iostream>
#include <vector>
#include <ctime>
#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <boost/concept_check.hpp>
int main(int argc, char **argv) {
srand(time(NULL));
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
cloud->width = 1000;
cloud->height = 1;
cloud->points.resize(cloud->width * cloud->height);
for(size_t i = 0; i < cloud->points.size(); ++i)
{
cloud->points[i].x = 1024.0f * rand() / (RAND_MAX + 1.0f);
cloud->points[i].y = 1024.0f * rand() / (RAND_MAX + 1.0f);
cloud->points[i].z = 1024.0f * rand() / (RAND_MAX + 1.0f);
}
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
kdtree.setInputCloud (cloud);
pcl::PointXYZ searchPoint;
searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);
searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);
searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);
// kNN
int K = 10;
std::vector<int> pointIdxNKNSearch(K);
std::vector<float> pointNKNSquareDistance(K);
std::cout << "K nearest neighbour search at ( " << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z << " ) with K = " << K << std::endl;
if(kdtree.nearestKSearch(searchPoint, K, pointIdxNKNSearch, pointNKNSquareDistance) > 0)
{
for(size_t i = 0; i < pointIdxNKNSearch.size(); ++i)
std::cout << " " << cloud->points[pointIdxNKNSearch[i]].x
<< " " << cloud->points[pointIdxNKNSearch[i]].y
<< " " << cloud->points[pointIdxNKNSearch[i]].z
<< " (squared distance: " << pointNKNSquareDistance[i] << " )" << std::endl;
}
// neighbours within radius search
std::vector<int> pointIdxRadiusSearch;
std::vector<float> pointRadiusSquaredDistance;
float radius = 256.0f * rand() / (RAND_MAX + 1.0f);
std::cout << "Neighbours within radius search at ( "<< searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z << " ) with radius = " << radius << std::endl;
std::cout << " if is " << kdtree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) << std::endl;
if(kdtree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0)
{
std::cout << "the size of pointIdxRadiusSearch is " << pointIdxRadiusSearch.size() << std::endl;
for (size_t i = 0; i < pointIdxRadiusSearch.size(); ++i)
{
std::cout << " " << cloud->points[pointIdxRadiusSearch[i]].x
<< " " << cloud->points[pointIdxRadiusSearch[i]].y
<< " " << cloud->points[pointIdxRadiusSearch[i]].z
<< " (squared distance: " << pointRadiusSquaredDistance[i] << " ) " << std::endl;
}
}
return 0;
}
因为是取得随机数,所以每次出来的结果可能都不太一样
参考地址:
http://www.pointclouds.org/documentation/tutorials/kdtree_search.php#kdtree-search