LeetCode解题 34:Find First and Last Position of Element in Sorted Array
Problem 34: Find First and Last Position of Element in Sorted Array [Medium]
Given an array of integers nums sorted in ascending order, find the starting and ending position of a given target value.
Your algorithm’s runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
Example 1:
Input: nums = [5,7,7,8,8,10], target = 8
Output: [3,4]
Example 2:
Input: nums = [5,7,7,8,8,10], target = 6
Output: [-1,-1]
来源:LeetCode
解题思路
- 基本思路是利用二分查找,分别寻找左边界和右边界。
leftPos()寻找左边界,返回第一个不小于target的数的下标。如果所有数都大于等于target,返回值为0;如果所有数都小于target,返回值为N。显然,当返回N时,数组中不存在target,直接返回结果[-1,-1]。rightPos()寻找右边界,返回最后一个不大于target的数的下标。如果所有数都小于等于target,返回值为N-1;如果所有数都大于target,返回值为-1。显然,当leftPos()返回值大于rightPos()返回值时,数组中不存在target,直接返回结果[-1,-1]。- 正常情况下返回结果[left,right],其中left和right分别为
leftPos()和rightPos()的返回值。
减少执行用时的设计:
- 数组个数为0时直接返回[-1,-1]。
- 在第二阶段寻找右边界时,不用寻找整个数组,可以在
leftPos()返回值的基础上,寻找left ~ N-1之间最后一个不大于target的下标,如果left ~ N-1之间的数都大于target,返回值为left-1。
二分查找时间复杂度O(log n),两次二分查找2*O(log n),总复杂度依旧为O(log n)。
要点:二分查找、条件判断
Solution (Java)
class Solution {
public int[] searchRange(int[] nums, int target) {
int N = nums.length;
if(N == 0) return new int[] {-1,-1};
int left = leftPos(nums, 0, N-1, target);
if(left == N) return new int[] {-1, -1};
int right = rightPos(nums, left, N-1, target);
// System.out.println(left+" "+right);
if(left > right) return new int[] {-1, -1};
return new int[] {left, right};
}
// the first index of integers no smaller than target
private int leftPos(int[] nums, int left, int right, int target){
if(left > right){
return left;
}
int p = (left + right + 1)/2;
if(nums[p] >= target){
return leftPos(nums, left, p-1, target);
}
else{
return leftPos(nums, p+1, right, target);
}
}
// the last index of integers no bigger than target
private int rightPos(int[] nums, int left, int right, int target){
if(left > right){
return right;
}
int p = (left + right + 1)/2;
if(nums[p] <= target){
return rightPos(nums, p+1, right, target);
}
else{
return rightPos(nums, left, p-1, target);
}
}
}
288

被折叠的 条评论
为什么被折叠?



