【LeetCode】解题188:Best Time to Buy and Sell Stock IV(动态规划)

本文介绍了如何使用动态规划解决LeetCode第188题,即在最多完成k次交易的情况下找到最大利润。通过维护k组{minCostj, maxPj}状态,更新公式推导出O(n)时间复杂度和O(2k)空间复杂度的解题方案。当k非常大时,转化为无限次交易问题处理。" 111649846,10296518,RESTful API实践:uniapp获取网络状态与接口操作,"['uniapp', '网络状态检查', 'RESTful API', 'Python开发', '接口操作']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeetCode解题 188:Best Time to Buy and Sell Stock IV (动态规划)

Problem 188: Best Time to Buy and Sell Stock IV [Hard]

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

Example 1:

Input: [2,4,1], k = 2
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.

Example 2:

Input: [3,2,6,5,0,3], k = 2
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.

来源:LeetCode

解题思路

本题需要使用动态规划思想。与题解123:Best Time to Buy and Sell Stock III同属于最佳时机买卖股票问题。

解题思路选用[题解123]中的方法III,123题中是最多可以交易2次,复杂度为 O ( n ) O(n) O(n)时间+ O ( 4 ) O(4) O(4)空间,本题中最多可以交易k次,所以复杂度为 O ( n ) O(n) O(n)时间+ O ( 2 k ) O(2k) O(2k)空间。
在一次循环中,可以使用k组{minCostj, maxPj},先计算第一轮的{minCost1, maxP1},再计算第二轮的{minCost2, maxP2},…,最后计算第k轮的{minCostk, maxPk}。

更新公式为:
c p c p 0 = [ p r i c e s [ 0 ] 0 p r i c e s [ 0 ] 0 . . . p r i c e s [ 0 ] 0 ] cpcp_0 = \begin{bmatrix} prices[0] \\ 0 \\ prices[0] \\ 0 \\ ... \\ prices[0] \\ 0 \end{bmatrix} \\ cpcp0=prices[0]0prices[0]0...prices[0]0
c p c p = [ { min ⁡ { c p c p [ 0 ] , p r i c e s [ i ] } max ⁡ { c p c p [ 1 ] , p r i c e s [ i ] − c p c p [ 0 ] } . . . min ⁡ { c p c p [ 2 ∗ j ] , p r i c e s [ i ] − c p c p [ 2 ∗ j − 1 ] } max ⁡ { c p c p [ 2 ∗ j + 1 ] , p r i c e s [ i ] − c p c p [ 2 ∗ j ] } . . . min ⁡ { c p c p [ 2 ∗ k − 2 ] , p r i c e s [ i ] − c p c p [ 2 ∗ k − 3 ] } max ⁡ { c p c p [ 2 ∗ k − 1 ] , p r i c e s [ i ] − c p c p [ 2 ∗ k − 2 ] } ] , i ∈ [ 0 , N − 1 ] , j ∈ [ 0 , k − 1 ] cpcp = \begin{bmatrix} \{\min\{cpcp[0], prices[i]\} \\ \max\{cpcp[1], prices[i]-cpcp[0]\} \\ ... \\ \min\{cpcp[2*j], prices[i] - cpcp[2*j-1]\} \\ \max\{cpcp[2*j+1], prices[i] - cpcp[2*j]\} \\ ... \\ \min\{cpcp[2*k-2], prices[i] - cpcp[2*k-3]\} \\ \max\{cpcp[2*k-1], prices[i] - cpcp[2*k-2]\} \end{bmatrix}, i\in[0, N-1], j\in[0, k-1] cpcp={min{cpcp[0],prices[i]}max{cpcp[1],prices[i]cpcp[0]}...min{cpcp[2j],prices[i]cpcp[2j1]}max{cpcp[2j+1],prices[i]cpcp[2j]}...min{cpcp[2k2],prices[i]cpcp[2k3]}max{cpcp[2k1],prices[i]cpcp[2k2]},i[0,N1],j[0,k1]
其中 N N N为总天数, k k k为最大交易次数。
c p c p = { m i n C o s t 1 , m a x P 1 , . . . , m i n C o s t j + 1 , m a x P j + 1 , . . . , m i n C o s t k , m a x P k } cpcp = \{minCost_1, maxP_1, ...,minCost_{j+1}, maxP_{j+1},...,minCost_k, maxP_k\} cpcp={minCost1,maxP1,...,minCostj+1,maxPj+1,...,minCostk,maxPk},更新过程相当于
c p c p = [ m i n C o s t 1 = min ⁡ { m i n C o s t 1 , p r i c e s [ i ] } m a x P 1 = max ⁡ { m a x P 1 , p r i c e s [ i ] − m i n C o s t 1 } . . . m i n C o s t j + 1 = min ⁡ { m i n C o s t j + 1 , p r i c e s [ i ] − m a x P j } m a x P j + 1 = max ⁡ { m a x P j + 1 , p r i c e s [ i ] − m i n C o s t j + 1 } . . . m i n C o s t k = min ⁡ { m i n C o s t k , p r i c e s [ i ] − m a x P k − 1 } m a x P k = max ⁡ { m a x P k , p r i c e s [ i ] − m i n C o s t k } ] cpcp = \begin{bmatrix} minCost_1 = \min\{minCost_1,prices[i]\} \\ maxP_1 = \max\{maxP_1,prices[i]-minCost_1\} \\ ... \\ minCost_{j+1} = \min\{minCost_{j+1},prices[i]-maxP_j\} \\ maxP_{j+1} = \max\{maxP_{j+1}, prices[i]-minCost_{j+1}\} \\ ... \\ minCost_k = \min\{minCost_k,prices[i]-maxP_{k-1}\} \\ maxP_k = \max\{maxP_k,prices[i]-minCost_k\} \end{bmatrix} cpcp=minCost1=min{minCost1,prices[i]}maxP1=max{maxP1,prices[i]minCost1}...minCostj+1=min{minCostj+1,prices[i]maxPj}maxPj+1=max{maxPj+1,prices[i]minCostj+1}...minCostk=min{minCostk,prices[i]maxPk1}maxPk=max{maxPk,prices[i]minCostk}
该方法只需要 O ( n ) O(n) O(n)时间, O ( 2 k ) O(2k) O(2k)空间。

注意:当k非常大时,会出现超出内存限制的问题,此时需要将 k > N 2 k > \frac{N}{2} k>2N的情况分开考虑。由于一次交易至少需要两天,所以当 k > N 2 k > \frac{N}{2} k>2N时,实际上相当于交易次数不受限制,也就是题解122:Best Time to Buy and Sell Stock II中的题意,可以复用该题的代码。

运行结果:
在这里插入图片描述
要点:动态规划

Solution (Java)

O(n)时间+O(2k)空间

class Solution {
    public int maxProfit(int k, int[] prices) {
        int N = prices.length;
        if(k < 1 || N < 2) return 0;
        if(k > N/2) return nolimit(prices);
        int[] cpcp = new int[2*k];
        for(int j = 0; j < k; j++){
            cpcp[2*j] = prices[0];
            cpcp[2*j+1] = 0;
        }
        for(int i = 1; i < N; i++){
            cpcp[0] = Math.min(cpcp[0], prices[i]);
            cpcp[1] = Math.max(cpcp[1], prices[i] - cpcp[0]);
            for(int j = 1; j < k; j++){
                cpcp[2*j] = Math.min(cpcp[2*j], prices[i] - cpcp[2*j-1]);
                cpcp[2*j+1] = Math.max(cpcp[2*j+1], prices[i] - cpcp[2*j]);
            }
        }
        return cpcp[2*k-1];
    }
    private int nolimit(int[] prices){
        int maxP = 0;
        for(int i = 1; i < prices.length; i++){
            maxP += Math.max(0, prices[i] - prices[i-1]);
        }
        return maxP;
    }
}

修改过程

  • 样例输入k=1000000000时,出现超出内存限制问题,需要将其考虑为无限次交易的情况,因此添加函数nolimit()。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值