LeetCode解题 123:Best Time to Buy and Sell Stock III (动态规划)
Problem 123: Best Time to Buy and Sell Stock III [Hard]
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
Example 1:
Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.
Example 2:
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
来源:LeetCode
解题思路
本题需要使用动态规划思想。
I. O(2n)时间+O(3n)空间
最常规的DP思想是使用maxP[N][3]来存储最大利润,其中maxP[i][k]是指在第k次循环中,第i天的最大利润。k的范围由总交易次数决定,本题中能够交易两次,因此k为0~2。
每轮循环k的更新公式为:
m
i
n
C
o
s
t
0
=
p
r
i
c
e
s
[
0
]
m
i
n
C
o
s
t
=
min
{
m
i
n
C
o
s
t
,
p
r
i
c
e
s
[
i
]
−
m
a
x
P
[
i
−
1
]
[
k
−
1
]
}
m
a
x
P
[
i
]
[
k
]
=
max
{
m
a
x
P
[
i
−
1
]
[
k
]
,
p
r
i
c
e
s
[
i
]
−
m
i
n
C
o
s
t
}
i
∈
[
1
,
N
−
1
]
,
k
∈
[
1
,
2
]
minCost_0 = prices[0]\\ minCost = \min\{minCost, prices[i] - maxP[i-1][k-1]\}\\ maxP[i][k] = \max\{maxP[i-1][k], prices[i] - minCost\}\\ i\in[1,N-1], k\in[1,2]
minCost0=prices[0]minCost=min{minCost,prices[i]−maxP[i−1][k−1]}maxP[i][k]=max{maxP[i−1][k],prices[i]−minCost}i∈[1,N−1],k∈[1,2]
其中
m
i
n
C
o
s
t
minCost
minCost代表当前最低成本,
p
r
i
c
e
s
[
i
]
−
m
a
x
P
[
i
−
1
]
[
k
−
1
]
prices[i] - maxP[i-1][k-1]
prices[i]−maxP[i−1][k−1]是当前第i天的价格减去上一轮中第i-1天的最大利润,相当于在卖出上一笔后在当天买入的实际成本:价格-利润=成本。
m
a
x
P
[
i
]
[
k
]
maxP[i][k]
maxP[i][k]是当前最大利润,
m
a
x
P
[
i
−
1
]
[
k
]
maxP[i-1][k]
maxP[i−1][k]是本轮中第i-1天的最大利润。
m
a
x
P
[
i
]
[
0
]
maxP[i][0]
maxP[i][0]全为0;
m
a
x
P
[
i
]
[
1
]
maxP[i][1]
maxP[i][1]为只买卖一次的最大利润;
m
a
x
P
[
i
]
[
2
]
maxP[i][2]
maxP[i][2]为买卖两次的最大利润。
该方法需要遍历2n次,需要3n的额外空间。
II. O(2n)时间+O(n)空间
由I中的更新公式可以看出,minCost与上一轮的maxP[i-1]有关,maxP[i]只与本轮的maxP[i-1]有关,而minCost需要的上一轮的maxP[i-1]其实与使用上一轮的maxP[i]意义相同(一个是昨天卖今天买的成本,一个是今天卖今天买的成本,如果今天的prices[i]比较低,那么上一轮的maxP[i]=maxP[i-1];如果今天的prices[i]比较高,那么今天买入一定不合算,所以minCost无论使用maxP[i]还是maxP[i-1]都不会更新),因此minCost只与上一轮的maxP[i]有关,maxP[i]只与本轮的maxP[i-1]有关,则maxP可以只使用O(n)的额外空间。
每轮循环的更新公式为:
m
i
n
C
o
s
t
0
=
p
r
i
c
e
s
[
0
]
m
i
n
C
o
s
t
=
min
{
m
i
n
C
o
s
t
,
p
r
i
c
e
s
[
i
]
−
m
a
x
P
[
i
]
}
m
a
x
P
[
i
]
=
max
{
m
a
x
P
[
i
−
1
]
,
p
r
i
c
e
s
[
i
]
−
m
i
n
C
o
s
t
}
i
∈
[
1
,
N
−
1
]
minCost_0 = prices[0]\\ minCost = \min\{minCost, prices[i] - maxP[i]\}\\ maxP[i] = \max\{maxP[i-1], prices[i] - minCost\}\\ i\in[1,N-1]
minCost0=prices[0]minCost=min{minCost,prices[i]−maxP[i]}maxP[i]=max{maxP[i−1],prices[i]−minCost}i∈[1,N−1]
该方法需要遍历2n次,需要n的额外空间。
运行结果:

III. O(n)时间+O(4)空间
由II中的更新公式,minCost只与上一轮的maxP[i]有关,maxP[i]只与本轮的maxP[i-1]有关,因此maxP只需要常数空间。
而第二轮循环中,只需要用到当天和前一天的数据,因此两重循环可以合并,可以在一次循环中使用两组{minCostk, maxPk},先计算第一轮的{minCost1, maxP1},再计算第二轮的{minCost2, maxP2}。
更新公式为:
c
p
c
p
0
=
{
p
r
i
c
e
s
[
0
]
,
0
,
p
r
i
c
e
s
[
0
]
,
0
}
c
p
c
p
=
{
min
{
c
p
c
p
[
0
]
,
p
r
i
c
e
s
[
i
]
}
,
max
{
c
p
c
p
[
1
]
,
p
r
i
c
e
s
[
i
]
−
c
p
c
p
[
0
]
}
,
min
{
c
p
c
p
[
2
]
,
p
r
i
c
e
s
[
i
]
−
c
p
c
p
[
1
]
}
,
max
{
c
p
c
p
[
3
]
,
p
r
i
c
e
s
[
i
]
−
c
p
c
p
[
2
]
}
}
cpcp_0 = \{prices[0], 0, prices[0], 0\}\\ cpcp = \{\min\{cpcp[0], prices[i]\}, \max\{cpcp[1], prices[i]-cpcp[0]\}, \\ \min\{cpcp[2], prices[i] - cpcp[1]\}, \max\{cpcp[3], prices[i] - cpcp[2]\}\}
cpcp0={prices[0],0,prices[0],0}cpcp={min{cpcp[0],prices[i]},max{cpcp[1],prices[i]−cpcp[0]},min{cpcp[2],prices[i]−cpcp[1]},max{cpcp[3],prices[i]−cpcp[2]}}
其中
c
p
c
p
=
{
m
i
n
C
o
s
t
1
,
m
a
x
P
1
,
m
i
n
C
o
s
t
2
,
m
a
x
P
2
}
cpcp = \{minCost_1, maxP_1, minCost_2, maxP_2\}
cpcp={minCost1,maxP1,minCost2,maxP2},更新过程相当于
c
p
c
p
=
{
m
i
n
C
o
s
t
1
=
min
{
m
i
n
C
o
s
t
1
,
p
r
i
c
e
s
[
i
]
}
,
m
a
x
P
1
=
max
{
m
a
x
P
1
,
p
r
i
c
e
s
[
i
]
−
m
i
n
C
o
s
t
1
}
,
m
i
n
C
o
s
t
2
=
min
{
m
i
n
C
o
s
t
2
,
p
r
i
c
e
s
[
i
]
−
m
a
x
P
1
}
,
m
a
x
P
2
=
max
{
m
a
x
P
2
,
p
r
i
c
e
s
[
i
]
−
m
i
n
C
o
s
t
2
}
}
cpcp = \{\\ minCost_1 = \min\{minCost_1,prices[i]\}, \\ maxP_1 = \max\{maxP_1,prices[i]-minCost_1\},\\ minCost_2 = \min\{minCost_2,prices[i]-maxP_1\}, \\ maxP_2 = \max\{maxP_2, prices[i]-minCost_2\}\}
cpcp={minCost1=min{minCost1,prices[i]},maxP1=max{maxP1,prices[i]−minCost1},minCost2=min{minCost2,prices[i]−maxP1},maxP2=max{maxP2,prices[i]−minCost2}}
该方法只需要
O
(
n
)
O(n)
O(n)时间,
O
(
4
)
O(4)
O(4)空间。
运行结果:

Solution (Java)
II. O(2n)时间+O(n)空间
class Solution {
public int maxProfit(int[] prices) {
int N = prices.length;
if(N < 2) return 0;
int minCost;
int[] maxP = new int[N];
for(int k = 0; k < 2; k++){
minCost = prices[0];
for(int i = 1; i < N; i++){
minCost = Math.min(minCost, prices[i] - maxP[i]);
maxP[i] = Math.max(maxP[i-1], prices[i] - minCost);
}
}
return maxP[N-1];
}
}
III. O(n)时间+O(1)空间
class Solution {
public int maxProfit(int[] prices) {
int N = prices.length;
if(N < 2) return 0;
int[] cpcp = {prices[0], 0, prices[0], 0}; //{minCost1, maxP1, minCost2, maxP2}
for(int i = 1; i < N; i++){
cpcp[0] = Math.min(cpcp[0], prices[i]);
cpcp[1] = Math.max(cpcp[1], prices[i] - cpcp[0]);
cpcp[2] = Math.min(cpcp[2], prices[i] - cpcp[1]);
cpcp[3] = Math.max(cpcp[3], prices[i] - cpcp[2]);
}
return cpcp[3];
}
}
本文介绍了如何解决LeetCode中的123题——Best Time to Buy and Sell Stock III,允许进行最多两次股票交易以获得最大利润。文章详细讲解了三种动态规划解决方案:O(2n)时间+O(3n)空间、O(2n)时间+O(n)空间和O(n)时间+O(4)空间,并提供了对应的Java代码实现。
4万+

被折叠的 条评论
为什么被折叠?



