[C#]C#实现RSA加密解密

RSA介绍

RSA公钥加密算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的。RSA取名来自开发他们三者的名字。

RSA的缺点:

image

  • 产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。

  • 分组长度太大,为保证安全性,n 至少也要 600bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048bits长的密钥,其他实体使用1024比特的密钥。C)RSA密钥长度随着保密级别提高,增加很快。下表列出了对同一安全级别所对应的密钥长度。

    保密级别对称密钥长度(bit)RSA密钥长度(bit)ECC密钥长度(bit)保密年限
    808010241602010
    11211220482242030
    12812830722562040
    19219276803842080
    256256153605122120

RSA的参数

RSA密码由三个整数组成,我们分别称之为n, e, d

(n、d)私钥,这个我们要私密保存
(n、e)公钥,可以对外公布
n模数(Modulus),私钥和公钥都包含有这个数
e公钥指数(publicExponent),一般是固定值65537
d私钥指数(privateExponent)

dotnet中的表示RSA参数的结构体是RSAParameters

image

openssl生成RSA密钥对

1. 生成一个RSA密钥

openssl genrsa -out private_pkcs1.pem 2048

上面的命令导出是pkcs#1格式rsa私钥

2. 从生成的RSA密钥中提取RSA公钥

ps: 私钥中包含了公钥相关信息,所以可以从私钥中导出公钥信息

openssl rsa -in private_pkcs1.pem -out public_pkcs1.pem -pubout -RSAPublicKey_out

公钥格式转换(PKCS#8 => PKCS#1)

openssl rsa -in public_pkcs8.pem -out public_pkcs1.pem -pubin -RSAPublicKey_out

私钥格式转换 (PKCS#1 => PKCS#8)

openssl pkcs8 -in private_pkcs1.pem -out private_pkcs8.pem -topk8 -nocrypt

RSA私钥格式转换(PKCS#8 => PKCS#1)

openssl rsa -in private_pkcs8.pem -out private_pkcs1.pem

C#中RSA的相关操作

生成公钥和私钥

struct RSASecretKey
{
    public RSASecretKey(string privateKey, string publicKey)
    {
        PrivateKey = privateKey;
        PublicKey = publicKey;
    }
    public string PublicKey { get; set; }
    public string PrivateKey { get; set; }
    public override string ToString()
    {
        return string.Format(
            "PrivateKey: {0}\r\nPublicKey: {1}", PrivateKey, PublicKey);
    }
}

/// <summary>
/// generate RSA secret key
/// </summary>
/// <param name="keySize">the size of the key,must from 384 bits to 16384 bits in increments of 8 </param>
/// <returns></returns>
RSASecretKey GenerateRSASecretKey(int keySize)
{
    RSASecretKey rsaKey = new RSASecretKey();
    using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(keySize))
    {
        rsaKey.PrivateKey = rsa.ToXmlString(true);
        rsaKey.PublicKey = rsa.ToXmlString(false);
    }
    return rsaKey;
}

实现公钥加密私钥解密

string RSAEncrypt(string xmlPublicKey,string content)
{
    string encryptedContent = string.Empty;
    using(RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
    {
        rsa.FromXmlString(xmlPublicKey);
        byte[] encryptedData = rsa.Encrypt(Encoding.Default.GetBytes(content), false);
        encryptedContent = Convert.ToBase64String(encryptedData);
    }
    return encryptedContent;
}

string RSADecrypt(string xmlPrivateKey, string content)
{
    string decryptedContent = string.Empty;
    using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
    {
        rsa.FromXmlString(xmlPrivateKey);
        byte[] decryptedData = rsa.Decrypt(Convert.FromBase64String(content), false);
        decryptedContent = Encoding.GetEncoding("gb2312").GetString(decryptedData);
    }
    return decryptedContent;
}

密钥格式的转换

C#中RSA公钥和私钥的格式都是XML的,而在其他语言如java中,生成的RSA密钥就是普通的Base64字符串,所以需要将C#xml格式的密钥转换成普通的Base64字符串,同时也要实现Base64密钥字符串生成C#中xml格式的密钥.
安装 BouncyCastle 这个Nuget包
PM > Install-Package BouncyCastle
BouncyCastle项目网址
BouncyCastlegithub地址
构造一个RSAKeyConventer

namespace RSA
{
    using System;
    using System.Security.Cryptography;
    using Org.BouncyCastle.Asn1.Pkcs;
    using Org.BouncyCastle.Math;
    using Org.BouncyCastle.Pkcs;
    using Org.BouncyCastle.Asn1.X509;
    using Org.BouncyCastle.X509;
    using Org.BouncyCastle.Security;
    using Org.BouncyCastle.Crypto.Parameters;

    public class RSAKeyConverter
    {
        /// <summary>
        /// xml private key -> base64 private key string
        /// </summary>
        /// <param name="xmlPrivateKey"></param>
        /// <returns></returns>
        public static string FromXmlPrivateKey(string xmlPrivateKey)
        {
            string result = string.Empty;
            using(RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
            {
                rsa.FromXmlString(xmlPrivateKey);
                RSAParameters param = rsa.ExportParameters(true);
                RsaPrivateCrtKeyParameters privateKeyParam = new RsaPrivateCrtKeyParameters(
                    new BigInteger(1, param.Modulus), new BigInteger(1, param.Exponent),
                    new BigInteger(1, param.D), new BigInteger(1, param.P),
                    new BigInteger(1, param.Q), new BigInteger(1, param.DP),
                    new BigInteger(1, param.DQ), new BigInteger(1, param.InverseQ));
                PrivateKeyInfo privateKey = PrivateKeyInfoFactory.CreatePrivateKeyInfo(privateKeyParam);

                result = Convert.ToBase64String(privateKey.ToAsn1Object().GetEncoded());
            }
            return result;
        }

        /// <summary>
        /// xml public key -> base64 public key string
        /// </summary>
        /// <param name="xmlPublicKey"></param>
        /// <returns></returns>
        public static string FromXmlPublicKey(string xmlPublicKey)
        {
            string result = string.Empty;
            using(RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
            {
                rsa.FromXmlString(xmlPublicKey);
                RSAParameters p = rsa.ExportParameters(false);
                RsaKeyParameters keyParams = new RsaKeyParameters(
                    false, new BigInteger(1,p.Modulus), new BigInteger(1, p.Exponent));
                SubjectPublicKeyInfo publicKeyInfo = SubjectPublicKeyInfoFactory.CreateSubjectPublicKeyInfo(keyParams);
                result = Convert.ToBase64String(publicKeyInfo.ToAsn1Object().GetEncoded());
            }
            return result;
        }

        /// <summary>
        /// base64 private key string -> xml private key
        /// </summary>
        /// <param name="privateKey"></param>
        /// <returns></returns>
        public static string ToXmlPrivateKey(string privateKey)
        {
            RsaPrivateCrtKeyParameters privateKeyParams =
                PrivateKeyFactory.CreateKey(Convert.FromBase64String(privateKey)) as RsaPrivateCrtKeyParameters;
            using(RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
            {
                RSAParameters rsaParams = new RSAParameters()
                {
                    Modulus = privateKeyParams.Modulus.ToByteArrayUnsigned(),
                    Exponent = privateKeyParams.PublicExponent.ToByteArrayUnsigned(),
                    D = privateKeyParams.Exponent.ToByteArrayUnsigned(),
                    DP = privateKeyParams.DP.ToByteArrayUnsigned(),
                    DQ = privateKeyParams.DQ.ToByteArrayUnsigned(),
                    P = privateKeyParams.P.ToByteArrayUnsigned(),
                    Q = privateKeyParams.Q.ToByteArrayUnsigned(),
                    InverseQ = privateKeyParams.QInv.ToByteArrayUnsigned()
                };
                rsa.ImportParameters(rsaParams);
                return rsa.ToXmlString(true);
            }
        }

        /// <summary>
        /// base64 public key string -> xml public key
        /// </summary>
        /// <param name="pubilcKey"></param>
        /// <returns></returns>
        public static string ToXmlPublicKey(string pubilcKey)
        {
            RsaKeyParameters p = 
                PublicKeyFactory.CreateKey(Convert.FromBase64String(pubilcKey)) as RsaKeyParameters;
            using(RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
            {
                RSAParameters rsaParams = new RSAParameters
                {
                    Modulus = p.Modulus.ToByteArrayUnsigned(),
                    Exponent = p.Exponent.ToByteArrayUnsigned()
                };
                rsa.ImportParameters(rsaParams);
                return rsa.ToXmlString(false);
            }
        }
    }
}

C# 折叠 复制 全屏

js的rsa操作

移步: GitHub - travist/jsencrypt: A zero-dependency Javascript library to perform OpenSSL RSA Encryption, Decryption, and Key Generation.

作者:Laggage

出处:https://www.cnblogs.com/laggage/p/11028614.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值