64. Minimum Path Sum -Medium

Question

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

给出一个由非负数组成的 m x n的表格,要求从左上角走到右下角的总和最小的路径。你只允许向下走或向右走

Example

None

Solution

  • 动态规划解。这道题很明显从对每个表格选择左和上中较小的路径即可。定义dp[i][j]:从左上角到grid[i][j]的总和最小的路径。递推式为:dp[i][j] = min(dp[i][j - 1], dp[i - 1][j])

    class Solution(object):
        def minPathSum(self, grid):
            """
            :type grid: List[List[int]]
            :rtype: int
            """
            if len(grid) == 0 or len(grid[0]) == 0: return 0
            dp = [[0 for _ in range(len(grid[0]))] for _ in range(len(grid))]
            for index_r in range(len(grid)):
                for index_c in range(len(grid[0])):
                    # 第一行只能从左向右走
                    if index_r == 0:
                        dp[index_r][index_c] = grid[index_r][index_c] + dp[index_r][index_c - 1]
                    # 第一列只能从上向下走
                    elif index_c == 0:
                        dp[index_r][index_c] = grid[index_r][index_c] + dp[index_r - 1][index_c]
                    # 其他选择上和左中较小者
                    else:
                        dp[index_r][index_c] = min(dp[index_r - 1][index_c] + grid[index_r][index_c],
                                                   dp[index_r][index_c - 1] + grid[index_r][index_c])
            return dp[-1][-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值