51NOD 1040 最大公约数之和(欧拉函数 + 转化)

给出一个n,求1-n这n个数,同n的最大公约数的和。比如:n = 6
1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15
Input
1个数N(N <= 10^9)
Output
公约数之和
Input示例
6
Output示例
15

对于这道题 1 ~ n 与 n 的最大公约数必定为 n 的因子。这里我们可以O(n^0.5)的复杂度枚举小于sqrt(n)的因子 ai,大于sqrt(n)的因子可以用n / ai 得到。每个因子出现的次数乘以该因子的数值,然后都加起来就是解了。这里不得不说求因子出现个数的转化很巧妙,求 ai 出现的次数等价于求满足 gcd(n,p)= ai 的 p 的个数(p < n),可以转化为求 gcd(n / ai,p / ai)= 1 的 p / ai 的个数即 phi(n / ai)(欧拉函数值),可以在O(n^0.5 logn)解决问题。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
ll phi(int x)
{
    ll ans = x;
    for(int i = 2;i * i <= x; ++i)
    {
        if(x % i == 0)
        {
            ans -= ans / i;
            while(x % i == 0) x /= i;
        }
    }
    if(x > 1) ans -= ans / x;
    return ans;
}
int main()
{
    int n;
    scanf("%d",&n);
    int maxn = sqrt(n + 0.5);
    ll ans = n;
    for(int i = 2;i <= maxn; ++i)
    {
        if(n % i == 0)
        {
            ans += phi(n / i) * i;
            if(i != n / i) ans += phi(i) * (n / i);
        }
    }
    ans += phi(n);
    printf("%lld\n",n == 1 ? 1 : ans);
    return 0;
}



### 关于51Nod 3100 上台阶问题的C++解法 #### 题目解析 该题目通常涉及斐波那契数列的应用。假设每次可以走一步或者两步,那么到达第 \( n \) 层台阶的方法总数等于到达第 \( n-1 \) 层和第 \( n-2 \) 层方法数之和。 此逻辑可以通过动态规划来解决,并且为了防止数值过大,需要对结果取模操作(如 \( \% 100003 \)[^1])。以下是基于上述思路的一个高效实现: ```cpp #include <iostream> using namespace std; const int MOD = 100003; long long f[100010]; int main() { int n; cin >> n; // 初始化前两项 f[0] = 1; // 到达第0层有1种方式(不移动) f[1] = 1; // 到达第1层只有1种方式 // 动态规划计算f[i] for (int i = 2; i <= n; ++i) { f[i] = (f[i - 1] + f[i - 2]) % MOD; } cout << f[n] << endl; return 0; } ``` 以上代码通过数组 `f` 存储每层台阶的结果,利用循环逐步填充至目标层数 \( n \),并最终输出结果。 --- #### 时间复杂度分析 由于仅需一次线性遍历即可完成所有状态转移,时间复杂度为 \( O(n) \)。空间复杂度同样为 \( O(n) \),但如果优化存储,则可进一步降低到 \( O(1) \): ```cpp #include <iostream> using namespace std; const int MOD = 100003; int main() { int n; cin >> n; long long prev2 = 1, prev1 = 1, current; if (n == 0 || n == 1) { cout << 1 << endl; return 0; } for (int i = 2; i <= n; ++i) { current = (prev1 + prev2) % MOD; prev2 = prev1; prev1 = current; } cout << prev1 << endl; return 0; } ``` 在此版本中,只保留最近两个状态变量 (`prev1`, `prev2`) 来更新当前值,从而节省内存开销。 --- #### 输入输出说明 输入部分接受单个整数 \( n \),表示台阶数量;程序会返回从地面走到第 \( n \) 层的不同路径数目,结果经过指定模运算处理以适应大范围数据需求。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值