思路:找规律题,可以发现,牌x移动后就会到2*x%(n+1)的位置,移动m次后就是,则
求2^m关于n+1的逆元就是2关于n+1的逆元。
#include<bits/stdc++.h>
using namespace std;
const int N = 2e5 + 7;
typedef long long ll;
ll n, m, l, mod;
ll a, b, x, y;
ll exgcd(ll a, ll b) {
if(!b) {
x = 1, y = 0;
return a;
}
ll d = exgcd(b, a % b);
ll t = x;
x = y;
y = t - (a / b) * y;
return d;
}
ll mul(ll a, ll b, ll p) {
ll ans = 0;
for(ll i = b; i; i >>= 1, a = (a + a) % p)
if(i & 1)
ans = (ans + a) % p;
return ans;
}
ll poww(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) {
ans = mul(ans, a, mod);//快速乘防止爆ll
}
a = mul(a, a, mod);
b >>= 1;
}
return ans;
}
int main() {
cin >> n >> m >> l;
mod = n + 1;
exgcd(2, n + 1);//计算逆元
while(x < 0)
x += (n + 1);
ll niyuan = x;
niyuan = poww(niyuan, m);
x = mul(niyuan, l, mod);
cout << x;
return 0;
}