题意:
现在给出一个图,其中分成点分成一个集合一个集合的,每一集合中的点互相之间的距离都是相同的,也给出来了;现在要求两个人分别从1和n出发,问最短多长时间才能遇到,且给出这些可能的相遇点;
思路:
建m个源点,这m个集合每个集合建一个源点,然后集合里的点与本集合的源点连一条指向源点的权值为w的边,再连一条反向边权值为0,然后跑最短路,输出可能的相遇点。
#include<bits/stdc++.h>
#define ll long long
#define MP make_pair
#define P pair<long long, int>
using namespace std;
const int N = 4e6 + 10;
int T, n, m, h[N], cnt, vis[N];
ll dis[2][N], ans;
struct node {
int v, w, nt;
} no[N];
void add(int u, int v, int w) {
no[cnt] = node{v, w, h[u]};
h[u] = cnt++;
}
void dijkstra(int s, int sta) {
memset(dis[sta], 0x3f, sizeof dis[sta]);
memset(vis, 0, sizeof vis);
priority_queue<P> q;
dis[sta][s] = 0;
q.push(MP(0, s));
while(!q.empty()) {
int u = q.top().second;
q.pop();
if(vis[u])
continue;
vis[u] = 1;
for(int i = h[u]; ~i; i = no[i].nt) {
int v = no[i].v;
if(dis[sta][v] > dis[sta][u] + no[i].w) {
dis[sta][v] = dis[sta][u] + no[i].w;
if(!vis[v])
q.push(MP(-dis[sta][v], v));
}
}
}
}
int main() {
scanf("%d", &T);
int kk = 1;
while(T--) {
memset(h, -1, sizeof h);
ans = 1e18, cnt = 0;
scanf("%d%d", &n, &m);
for(int num, k, w, i = 1; i <= m; i++) {
scanf("%d%d", &w, &num);
while(num--) {
scanf("%d", &k);
add(n + i, k, w);
add(k, n + i, 0);
}
}
dijkstra(1, 0);
dijkstra(n, 1);
int num;
for (int i = 1; i <= n; ++i)
if (ans >= max(dis[0][i], dis[1][i])) {
ans = max(dis[0][i], dis[1][i]);
num = i;
}
if (ans == 1e18)
printf("Case #%d: Evil John\n", kk++);
else {
printf("Case #%d: %lld\n", kk++, ans);
for (int i = 1; i <= n; ++i)
if (ans == max(dis[0][i], dis[1][i])) {
printf("%d", i);
if (i != num)
printf(" ");
}
printf("\n");
}
}
return 0;
}