假定x、y的值分别为M和N,需要计算$ x \div y $的值
x=Nx = Nx=N
y=My = My=M
将除法格式变换为数据相乘
xy=x×1y=N×1M\frac{x}{y} = x\times\frac{1}{y} = N\times\frac{1}{M}yx=x×y1=N×M1
如何得到 1M\frac{1}{M}M1,如下方程为0时刻的解
f(x)=1x−M(EQ.1)f(x)=\frac{1}{x}-M \quad (EQ.1)f(x)=x1−M(EQ.1)
可导情况下
f(x1)=f(x0)+f′(x0)(x1−x0)f(x_1) = f(x_0)+f'(x_0)(x_1-x_0)f(x1)=f(x0)+f′(x0)(x1−x0)
令f(x1)=0f(x_1)=0f(x1)=0,则
0=f(x0)+f′(x0)(x1−x0)0 = f(x_0)+f'(x_0)(x_1-x_0)0=f(x0)+f′(x0)(x1−x0)
得到牛顿迭代公式
x1=x0−f(x0)f′(x0)(EQ.2)x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \quad (EQ.2)x1=x0−f′(x0)f(x0)(EQ.2)
将EQ.1代入EQ.2得到:
x1=x0−1x0−M(1x0−M)′x_1 = x_0 - \frac{\frac{1}{x_0}-M}{(\frac{1}{x_0}-M)'}x1=x0−(x01−M)′x01−M
x1=x0−1x0−M(1x0−M)′x_1 = x_0 - \frac{\frac{1}{x_0}-M}{(\frac{1}{x_0}-M)'}x1=x0−(x01−M)′x01−M
x1=x0−1x0−M−1x02x_1 = x_0 - \frac{\frac{1}{x_0}-M}{-\frac{1}{x_0^2}}x1=x0−−x021x01−M
x1=x0+x0×(1−M×x0)x_1 = x_0 + x_0\times(1-M \times x_0)x1=x0+x0×(1−M×x0)
x1=x0×(2−M×x0)x_1 = x_0\times(2-M \times x_0)x1=x0×(2−M×x0)