离散信号傅立叶变换
X ( k ) = ∑ n = 0 N x ( n ) W N n k X(k)=\sum_{n=0}^Nx(n)W_N^{nk} X(k)=∑n=0Nx(n)WNnk
其中
W N = e − j 2 π N W_N=e^{-j\frac{2\pi}{N}} WN=e−jN2π
k = 0 , 1 , . . . , N − 1 k=0,1,...,N-1 k=0,1,...,N−1
基2时域抽取FFT
离散傅立叶变换为
X ( k ) = ∑ n = 0 N x ( n ) W N n k X(k)=\sum_{n=0}^Nx(n)W_N^{nk} X(k)=∑n=0Nx(n)WNnk
可分解为
X ( k ) = ∑ n = 0 N 2 − 1 ( x ( 2 n ) W N 2 n k + x ( 2 n + 1 ) W N ( 2 n + 1 ) k ) X(k)=\sum_{n=0}^{\frac{N}{2}-1}(x(2n)W_N^{2nk}+x(2n+1)W_N^{(2n+1)k}) X(k)=∑n=02N−1(x(2n)WN2nk+x(2n+1)WN(2n+1)k)
= ∑ n = 0 N 2 − 1 x ( 2 n ) W N 2 n k + ∑ n = 0 N 2 − 1 x ( 2 n + 1 ) W N ( 2 n + 1 ) k \quad = \sum_{n=0}^{\frac{N}{2}-1}x(2n)W_N^{2nk}+\sum_{n=0}^{\frac{N}{2}-1}x(2n+1)W_N^{(2n+1)k} =∑n=02N−1x(2n)WN2nk+∑n=02N−1x(2n+1)WN(2n+1)k
= ∑ n = 0 N 2 − 1 x ( 2 n ) W N 2 n k + W N k ∑ n = 0 N 2 − 1 x ( 2 n + 1 ) W N ( 2 n ) k ( E Q . 1 ) \quad = \sum_{n=0}^{\frac{N}{2}-1}x(2n)W_N^{2nk}+W_N^{k}\sum_{n=0}^{\frac{N}{2}-1}x(2n+1)W_N^{(2n)k}\quad(EQ.1) =∑n=02N−1x(2n)WN2nk+WNk∑n=02N−1x(2n+1)WN(2n)k(EQ.1)
序列x(n)分解
偶 数 项 x 1 ( n ) = x ( 2 n ) , 其 中 n = 0 , 1 , . . . , N 2 − 1 偶数项x1(n)=x(2n),其中n=0,1,...,\frac{N}{2}-1 偶数项x1(n)=x(2n),其中n=0,1,...,2N−1
奇 数 项 x 2 ( n ) = x ( 2 n + 1 ) , 其 中 n = 0 , 1 , . . . , N 2 − 1 奇数项x2(n)=x(2n+1),其中n=0,1,...,\frac{N}{2}-1 奇数项x2(n)=x(2n+1),其中n=0,1,...,2N−1
则相应DFT
X 1 ( k ) = ∑ n = 0 N 2 − 1 x 1 ( n ) W N 2 n k , 其 中 k = 0 , 1 , . . . , N 2 − 1 X_1(k)=\sum_{n=0}^{\frac{N}{2}-1}x1(n)W_{\frac{N}{2}}^{nk},其中k=0,1,...,\frac{N}{2}-1 X1(k)=∑n=02N−1x1(n)W2Nnk,其中k=0,1,...,2N−1
X 2 ( k ) = ∑ n = 0 N 2 − 1 x 2 ( n ) W N 2 n k , 其 中 k = 0 , 1 , . . . , N 2 − 1 X_2(k)=\sum_{n=0}^{\frac{N}{2}-1}x2(n)W_{\frac{N}{2}}^{nk},其中k=0,1,...,\frac{N}{2}-1 X2(k)=∑n=02N−1x2(n)W2Nnk,其中k=0,1,...,2N−1
其中
W N 2 n k = e − j 2 π n k N 2 W_{\frac{N}{2}}^{nk} = e^{-j\frac{2\pi nk}{\frac{N}{2}}} W