bzoj 4742 [Usaco2016 Dec]Team Building

Description
每年农夫约翰都会带着他的N只牛去集会上参加“你是最棒哒“的比赛。他的对手农夫保罗也带了M只牛去参加比赛
(1 ≤ N ≤ 1000, 1 ≤ M ≤ 1000)。每只牛都有自己的分数。两人会选择K只牛组成队伍(1 ≤ K ≤ 10),两队
牛在按分数大小排序后一一配对,并且约翰打败保罗当且仅当对于每一对牛,约翰的牛分数都比保罗的高。请帮助
约翰计算约翰打败保罗的方案数 mod 1000000009。两种方案不同,当且仅当约翰或保罗选择的牛的集合与另一种
方案不同。

Input
The first line of input contains N, M, and K. The value of K will be no larger than N or M.
The next line contains the N scores of FJ’s cows.
The final line contains the M scores of FP’s cows.

Output
Print the number of ways FJ and FP can pick teams such that FJ wins, modulo 1,000,000,009.

Sample Input
10 10 3
1 2 2 6 6 7 8 9 14 17
1 3 8 10 10 16 16 18 19 19

Sample Output
382

Solution

这种需要取模的计数一般都是能用dp做的。
我们对牛进行排序,就能发现子问题非常清晰了。
再对转移进行滚动与前缀和的优化。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int mod=1000000009;
int n,m,q,ans;
int a[1005],b[1005];
int f[1005][1005][2]; //到i牛,j牛,k组的方案数前缀和
int main()
{
    cin>>n>>m>>q;
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<=m;i++) scanf("%d",&b[i]);
    sort(a+1,a+n+1);
    sort(b+1,b+m+1);
    for(int k=1;k<=q;k++) 
    {
        for(int i=1;i<=n;i++) 
        for(int j=1;j<=m;j++) 
        if(a[i]>b[j]) 
        {
            if(k>1) f[i][j][1]=f[i-1][j-1][0]; else f[i][j][1]=1;
        }
        for(int i=1;i<=n;i++) 
        for(int j=1;j<=m;j++) 
        {
            f[i][j][0]=(f[i-1][j][0]+f[i][j-1][0])%mod;
            f[i][j][0]=((f[i][j][0]-f[i-1][j-1][0])%mod+mod)%mod;
            f[i][j][0]=(f[i][j][0]+f[i][j][1])%mod;
            f[i][j][1]=0;
        }
    }
    cout<<f[n][m][0];       
    return 0;
}
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值