离散形式状态空间方程
{ x ( ( k + 1 ) T ) = A x ( k T ) + B u ( k T ) y ( k t ) = C x ( k T ) {\large\left\{\begin{matrix}x((k+1)T) & = &Ax(kT)+Bu(kT) \\ y(kt)&= &Cx(kT)\end{matrix}\right.} {
x((k+1)T)y(kt)==Ax(kT)+Bu(kT)Cx(kT)
对其进行z变换1,则
{ z X ( z ) − X ( 0 ) = A X ( z ) + B U ( z ) Y ( z ) = C X ( z ) {\large\left\{\begin{matrix}zX(z)-X(0) & = &AX(z)+BU(z) \\ Y(z)&= &CX(z)\end{matrix}\right.} {
zX(z)−X(0)Y(z)==AX(z)+BU(z)CX(z)
假设X(0)=0,则
{ z X ( z ) = A X ( z ) + B U ( z ) Y ( z ) = C X ( z ) {\large \left\{\begin{matrix}zX(z)& = &AX(z)+BU(z) \\ Y(z)&= &CX(z)\end{matrix}\right.} {
zX(z)Y(z)==AX(z)+BU(z)CX(z)
从而,
Y ( z ) = C ( z I − A ) − 1 ⋅ B U ( z ) {\large Y(z)= C(zI-A)^{-1}·BU(z)} Y(z)=C(zI−A)−1⋅BU(z)
传递函数可以表示为如下形式:
P ( z − 1 ) = [ A B C 0 ] = C ( z I − A ) − 1 B {\large P(z^{-1})= \left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]=C(zI-A)^{-1}B} P(z−1)=[ACB0]=C(zI−A)−1B
因为:
( I − A z ) ∑ i = 0 ∞ ( A z ) i = ∑ i = 0 ∞ ( A z ) i − ∑ i = 0 ∞ ( A z ) i + 1 = ( A z ) 0 + ∑ i = 1 ∞ ( A z ) i − ∑ i = 0 ∞ ( A z ) i + 1 = I + ∑ i = 0 ∞ ( A z ) i + 1 − ∑ i = 0 ∞ ( A z ) i + 1 = I {\large \begin{matrix} (I-\frac{A}{z} )\sum_{ i=0}^{\infty}(\frac{A}{z} )^i & = & \sum_{ i=0}^{\infty}(\frac{A}{z} )^i-\sum_{ i=0}^{\infty}(\frac{A}{z} )^{i+1} \\ & =&(\frac{A}{z} )^0+\sum_{ i=1}^{\infty}(\frac{A}{z} )^{i}-\sum_{ i=0}^{\infty}(\frac{A}{z} )^{i+1}\\&=&I+\sum_{ i=0}^{\infty}(\frac{A}{z} )^{i+1}-\sum_{ i=0}^{\infty}(\frac{A}{z} )^{i+1}\\&=&I\end{matrix}} (I−zA)∑i=0∞(zA)